On the use of a R-functions
PKanalix can be called via R-functions. It is possible to have access to the project exactly in the same way as you would do with the interface. All the functions are described below.
- Installation guidelines and initialization procedure
- List of the R functions
- Description of the functions concerning the dataset
- Description of the functions concerning the initialization and path to demo projects
- Description of the functions concerning the plots
- Description of the functions concerning the project management
- Description of the functions concerning the project settings and preferences
- Description of the functions concerning the reporting
- Description of the functions concerning the results
- Description of the functions concerning the scenario
- Description of the functions concerning the settings
List of the R functions
Description of the functions concerning the dataset
- addAdditionalCovariate: Create an additional covariate for stratification purpose.
- applyFilter: Apply a filter on the current data.
- createFilter: Create a new filtered data set by applying a filter on an existing one and/or complementing it.
- deleteAdditionalCovariate: Delete a created additinal covariate.
- deleteFilter: Delete a data set.
- editFilter: Edit the definition of an existing filtered data set.
- formatData: Adapt and export a data file as a MonolixSuite formatted data set.
- getAvailableData: Get information about the data sets and filters defined in the project.
- getCovariateInformation: Get the name, the type and the values of the covariates present in the project.
- getFormatting: Get data formatting settings from a loaded project.
- getObservationInformation: Get the name, the type and the values of the observations present in the project.
- getTreatmentsInformation: Get information about doses present in the loaded dataset.
- removeFilter: Remove the last filter applied on the current data set.
- renameAdditionalCovariate: Rename an existing additional covariate.
- renameFilter: Rename an existing filtered data set.
- selectData: Select the new current data set within the previously defined ones (original and filters).
- getCAData: Get the data as it is used for CA.
- getNCAData: Get the data as it is used for NCA.
Description of the functions concerning the initialization and path to demo projects
- initializeLixoftConnectors: Initialize lixoftConnectors API for a given software.
- getDemoPath: Get the path to the demo projects.
Description of the functions concerning the plots
- plotBivariateDataViewer: Plot the bivariate viewer.
- plotCovariates: Plot the covariates.
- plotObservedData: Plot the observed data.
- plotBEConfidenceIntervals: Plot the individual NCA parameters vs covariates.
- plotBESequenceByPeriod: Plot the bioequivalence parameters as sequence-by-period.
- plotBESubjectByFormulation: Plot the Bioequivalence parameters as Subject-by-formulation.
- plotCAIndividualFits: Plot the CA individual fits.
- plotCAObservationsVsPredictions: Plot the observations vs the CA predictions.
- plotCAParametersCorrelation: Plot the correlation bewteen CA individual parameters.
- plotCAParametersDistribution: Plot the distribution of the individual CA parameters.
- plotCAParametersVsCovariates: Plot the CA individual parameters vs covariates.
- plotNCAData: Plot the observed data as used for the NCA calculations.
- plotNCAIndividualFits: Plot the NCA individual fits (LambdaZ regression).
- plotNCAParametersCorrelation: Plot the correlation between NCA individual parameters.
- plotNCAParametersDistribution: Plot the distribution of the individual NCA parameters.
- plotNCAParametersVsCovariates: Plot the NCA individual parameters vs covariates.
- getPlotPreferences: Define the preferences to customize plots.
- resetPlotPreferences: Reset plot preferences to go back to default preferences.
- setPlotPreferences: Set preferences to customize plots.
Description of the functions concerning the project management
- exportProject: Export the current project to another application of the MonolixSuite, and load the exported project.
- getData: Get a description of the data used in the current project.
- getInterpretedData: Get data after interpretation done by the software, as it is displayed in the Data tab in the interface.
- getLibraryModelContent: Get the content of a library model.
- getLibraryModelName: Get the name of a library model given a list of library filters.
- getMapping: Get mapping between data and model.
- getStructuralModel: Get the model file for the structural model used in the current project.
- importProject: Import a Monolix or a PKanalix project into the currently running application initialized in the connectors.
- isProjectLoaded: Get a logical saying if a project is currently loaded.
- loadProject: Load a project in the currently running application initialized in the connectors.
- newProject: Create a new project.
- saveProject: Save the current project as a file that can be reloaded in the connectors or in the GUI.
- setData: Set project data giving a data file and specifying headers and observations types.
- setMapping: Set mapping between data and model.
- setStructuralModel: Set the structural model.
- shareProject: Create a zip archive file from current project and its results.
Description of the functions concerning the project settings and preferences
- getConsoleMode: Get console mode, ie volume of output after running estimation tasks.
- getPreferences: Get a summary of the project preferences.
- getProjectSettings: Get a summary of the project settings.
- setConsoleMode: Set console mode, ie volume of output after running estimation tasks.
- setPreferences: Set the value of one or several of the project preferences.
- setProjectSettings: Set the value of one or several of the settings of the project.
Description of the functions concerning the reporting
- generateReport: Generate a project report with default options or from a custom Word template.
Description of the functions concerning the results
- getBioequivalenceResults: Get results for different steps in bioequivalence analysis.
- getCACost: Get the value of the cost function minimized in CA, and additional criteria to compare models.
- getCAIndividualParameters: Get the estimated values for each subject of some of the individual CA parameters of the current project.
- getCAParameterStatistics: Get statistics over the estimated values of some of the CA parameters of the current project.
- getCAResultsStratification: Get the stratification used to compute NCA parameters statistics table.
- getNCAIndividualParameters: Get the estimated values for each subject of some of the individual NCA parameters of the current project.
- getNCAIndividualRatios: Get for each subject the estimated values of NCA ratios, defined as ratios of NCA parameters across occasions.
- getNCAParameterStatistics: Get statistics over the estimated values of some of the NCA parameters of the current project.
- getNCARatioStatistics: Get statistics over the estimated values of NCA ratios defined in the current project as ratios of NCA parameters across occasions.
- getNCAResultsStratification: Get the stratification used to compute NCA parameters stratistics table.
- getPointsIncludedForLambdaZ: Get points used to compute lambda_Z in NCA estimation.
- setCAResultsStratification: Set the stratification used to compute CA parameters statistics table.
- setNCAResultsStratification: Set the stratification used to compute NCA parameters statistics table.
Description of the functions concerning the scenario
- computeChartsData: Compute (if needed) and export the charts data of a given plot or, if not specified, all the available project plots.
- getLastRunStatus: Return an execution report about the last run with a summary of the error which could have occurred.
- getScenario: Get the list of tasks that will be run at the next call to
runScenario
. - runScenario: Run the scenario that has been set with
setScenario
. - setScenario: Clear the current scenario and build a new one from a given list of tasks.
- getCAParametersByAutoInit: Automatically estimate initial parameters values for CA.
- runBioequivalenceEstimation: Estimate the bioequivalence for the selected parameters.
- runCAEstimation: Estimate the CA parameters for each individual of the project.
- runEstimation: Run the NCA analysis and the CA analysis if the structural model for the CA calculation is defined.
- runNCAEstimation: Estimate the NCA parameters for each individual of the project.
Description of the functions concerning the settings
- addCustomNCAParametersFromPreferences: Add custom parameters from the preferences to the project.
- createCustomNCAParameter: Create a new NCA parameter as a formula of existing parameters and covariates.
- createNCARatio: To use this, the dataset must have occasions.
- deleteCustomNCAParameter: Remove a previously created custom parameter from the current project.
- deleteNCARatio: [PKanalix] Delete an NCA ratio.
- getBioequivalenceSettings: Get the settings associated to the bioequivalence estimation.
- getCAInitialValues: Get the list of initial values for all parameters of the model used for compartmental analysis.
- getCASettings: Get the settings associated to the compartmental analysis.
- getCustomNCAParameters: Retrieve the list of the custom NCA parameters defined in the current project and/or the preferences.
- getDataSettings: Get the data settings associated to the non compartmental analysis.
- getNCARatios: This returns the settings used to define ratios of NCA parameters across occasions, with the same values as the ones given with createNCARatio.
- getNCASettings: Get the settings associated to the non compartmental analysis.
- setBioequivalenceSettings: Set the value of one or several of the settings associated to the bioequivalence estimation.
- setCAInitialValues: Set the initial values of parameters for the compartmental analysis.
- setCASettings: Set the settings associated to the compartmental analysis.
- setDataSettings: Set the value of one or several of the data settings associated to the non compartmental analysis.
- setNCASettings: Set the value of one or several of the settings associated to the non compartmental analysis.
[Monolix – PKanalix] Add an additional covariate
Description
Create an additional covariate for stratification purpose. Notice that these covariates are available only if they are not
contant through the dataset.
Available column transformations are:
[continuous] | ‘firstDoseAmount’ | (first dose amount) |
[continuous] | ‘doseNumber’ | (dose number) |
[discrete] | ‘administrationType’ | (admninistration type) |
[discrete] | ‘administrationSequence’ | (administration sequence) |
[discrete] | ‘dosingDesign’ | (dose multiplicity) |
[continuous] | ‘observationNumber’ | (observation number per individual, for a given observation type) |
Usage
addAdditionalCovariate(transformation, base = "", name = "")
Arguments
transformation |
(character) applied transformation. |
base |
(character) [optional] base data on which the transformation is applied. |
name |
(character) [optional] name of the covariate. |
See Also
Click here to see examples
# addAdditionalCovariate("firstDoseAmount") addAdditionalCovariate(transformation = "observationNumberPerIndividual", headerName = "CONC") ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Apply filter
Description
Apply a filter on the current data.
Usage
applyFilter(filter, name = "")
Arguments
filter |
(list< list< action = "headerName-comparator-value" > > or "complement") filter definition. Existing actions are "selectLines", "selectIds", "removeLines" and "removeIds". First vector level is for set unions, the second one for set intersection. It is possible to give only a list of actions if there is only no high-level union. |
name |
(character) [optional] created data set name. If not defined, the default name is "currentDataSet_filtered". |
Details
The possible actions are line selection (selectLines), line removal (removeLines), Ids selection (selectIds) or removal (removeIds).
The selection is a string containing the header name, a comparison operator and a value
selection = <character> "headerName*-comparator**-value" (ex: "id==’100’", "WEIGHT<70", "SEX!=’M’")
Notice that :
– The headerName corresponds to the data set header or one of the header aliases defined in MONOLIX software preferences
– The comparator possibilities are "==", "!=" for all types of value and "<=", "<", ">=", ">" only for numerical types
Syntax:
* apply a simple filter:
applyFilter( filter = list(act = sel)), e.g. applyFilter( filter = list(removeIds = "WEIGHT<50"))
=> apply a filter with the action act on the selection sel. In this example, we apply a filter that removes all subjects with a weight less than 50.
* apply a filter with several concurrent conditions, i.e AND condition:
applyFilter( list(act1 = sel1, act2 = sel2)), e.g. applyFilter( filter = list(removeIds = "WEIGHT<50", removeIds = " AGE<20"))
=> apply a filter with both the action act1 on sel1 AND the action act2 on sel2. In this example, we apply a filter that removes all subjects with a weight less than 50 and an age less than 20.
It corresponds to the intersecton of the subjects with a weight less than 50 and the subjects with an age less than 20.
* apply a filter with several non-concurrent conditions, i.e OR condition:
applyFilter(filter = list(list(act1 = sel1), list(act2 = sel2)) ), e.g. applyFilter( filter = list(list(removeIds = "WEIGHT<50"),list(removeIds = " AGE<20")))
=> apply a filter with the action act1 on sel1 OR the action act2 on sel2. In this example, we apply a filter that removes all subjects with a weight less than 50 and an age less than 20.
It corresponds to the union of the subjects with a weight less than 50 and the subjects with an age less than 20.
* It is possible to have any combination:
applyFilter(filter = list(list(act1 = sel1), list(act2 = sel2, act3 = sel3)) ) <=> act1,sel1 OR ( act2,sel2 AND act3,sel3 )
* It is possible to apply the complement of an existing filter:
applyFilter(filter = "complement")
See Also
getAvailableData createFilter removeFilter
Click here to see examples
# ---------------------------------------------------------------------------------------- LINE [ integer ] applyFilter( filter = list(removeLines = "line>10") ) # keep only the 10th first rows ---------------------------------------------------------------------------------------- ID [ character | integer ] If there are only integer identifiers within the data set, ids will be considered as integers. On the contrary, they will be treated as character data. applyFilter( filter = list(selectIds = "id==100") ) # select the subject called '100' applyFilter( filter = list(list(removeIds = "id!='id_2'")) ) # select all the subjects excepted the one called 'id_2' ---------------------------------------------------------------------------------------- ID INDEX [integer] applyFilter( filter = list(list(removeIds = "idIndex!=2"), list(selectIds = "id<5")) ) # select the 4 first subjects excepted the second one ---------------------------------------------------------------------------------------- OCC [ integer ] applyFilter( filter = list(selectIds = "occ1==1", removeIds = "occ2!=3") ) # select the subjects whose first occasion level is '1' and whose second one is different from '3' ---------------------------------------------------------------------------------------- TIME [ double ] applyFilter( filter = list(removeIds='TIME>120') ) # remove the subjects who have time over 120 applyFilter( filter = list(selectLines='TIME>120') ) # remove the all the lines where the time is over 120 ---------------------------------------------------------------------------------------- OBSERVATION [ double ] applyFilter( filter = list(selectLines = "CONC>=5.5", removeLines = "CONC>10")) # select the lines where CONC value superior or equal to 5.5 or strictly higher than 10 applyFilter( filter = list(removeIds = "CONC<0") ) # remove subjects who have negative CONC values applyFilter( filter = list(removeIds = "E==0") ) # remove subjects for who E equals 0 ---------------------------------------------------------------------------------------- OBSID [ character ] applyFilter( filter = list(removeIds = "y1==1") ) # remove subject who have at least one observation for y1 applyFilter( filter = list(selectLines = "y1!=2") ) # select all lines corresponding to observations exepected those for y2 ---------------------------------------------------------------------------------------- AMOUNT [ double ] applyFilter( filter = list(selectIds = "AMOUT==10") ) # select subjects who have a dose equals to 10 ---------------------------------------------------------------------------------------- INFUSION RATE AND INFUSION DURATION [ double ] applyFilter( filter = list(selectIds = "RATE<10") ) # select subjects who have dose with a rate less than 10 ---------------------------------------------------------------------------------------- COVARIATE [ character (categorical) | double (continuous) ] applyFilter( filter = list(selectIds = "SEX==M", selectIds = "WEIGHT<80") ) # select subjects who are men and whose weight is lower than 80kg ---------------------------------------------------------------------------------------- REGERSSOR [ double ] applyFilter( filter = list(selectLines = "REG>10") ) # select the lines where the regressor value is over 10 ---------------------------------------------------------------------------------------- COMPLEMENT applyFilter(origin = "data_filtered", filter = "complement" ) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Create filter
Description
Create a new filtered data set by applying a filter on an existing one and/or complementing it.
Usage
createFilter(filter, name = "", origin = "")
Arguments
filter |
(list< list< action = "headerName-comparator-value" > > or "complement") [optional] filter definition. Existing actions are "selectLines", "selectIds", "removeLines" and "removeIds". First vector level is for set unions, the second one for set intersection. It is possible to give only a list of actions if there is only no high-level union. |
name |
(character) [optional] created data set name. If not defined, the default name is "currentDataSet_filtered". |
origin |
(character) [optional] name of the data set to be filtered. The current one is used by default. |
Details
The possible actions are line selection (selectLines), line removal (removeLines), Ids selection (selectIds) or removal (removeIds).
The selection is a string containing the header name, a comparison operator and a value
selection = <character> "headerName*-comparator**-value" (ex: "id=='100'"
, "WEIGHT<70"
, "SEX!='M'"
)
Notice that :
– The headerName corresponds to the data set header or one of the header aliases defined in MONOLIX software preferences
– The comparator possibilities are "==", "!=" for all types of value and "<=", "<", ">=", ">" only for numerical types
Syntax:
* create a simple filter:
createFilter( filter = list(act = sel)), e.g. createFilter( filter = list(removeIds = "WEIGHT<50"))
=> create a filter with the action act on the selection sel. In this example, we create a filter that removes all subjects with a weight less than 50.
* create a filter with several concurrent conditions, i.e AND condition:
createFilter( list(act1 = sel1, act2 = sel2)), e.g. createFilter( filter = list(removeIds = "WEIGHT<50", removeIds = " AGE<20"))
=> create a filter with both the action act1 on sel1 AND the action act2 on sel2. In this example, we create a filter that removes all subjects with a weight less than 50 and an age less than 20.
It corresponds to the intersecton of the subjects with a weight less than 50 and the subjects with an age less than 20.
* create a filter with several non-concurrent conditions, i.e OR condition:
createFilter(filter = list(list(act1 = sel1), list(act2 = sel2)) ), e.g. createFilter( filter = list(list(removeIds = "WEIGHT<50"),list(removeIds = " AGE<20")))
=> create a filter with the action act1 on sel1 OR the action act2 on sel2. In this example, we create a filter that removes all subjects with a weight less than 50 and an age less than 20.
It corresponds to the union of the subjects with a weight less than 50 and the subjects with an age less than 20.
* It is possible to have any combinaison:
createFilter(filter = list(list(act1 = sel1), list(act2 = sel2, act3 = sel3)) ) <=> act1,sel1 OR ( act2,sel2 AND act3,sel3 )
* It is possible to create the complement of an existing filter:
createFilter(filter = "complement")
See Also
Click here to see examples
# ---------------------------------------------------------------------------------------- LINE [ integer ] createFilter( filter = list(removeLines = "line>10") ) # keep only the 10th first rows ---------------------------------------------------------------------------------------- ID [ character | integer ] If there are only integer identifiers within the data set, ids will be considered as integers. On the contrary, they will be treated as character data. createFilter( filter = list(selectIds = "id==100") ) # select the subject called '100' createFilter( filter = list(list(removeIds = "id!='id_2'")) ) # select all the subjects excepted the one called 'id_2' ---------------------------------------------------------------------------------------- ID INDEX [integer] createFilter( filter = list(list(removeIds = "idIndex!=2"), list(selectIds = "id<5")) ) # select the 4 first subjects excepted the second one ---------------------------------------------------------------------------------------- OCC [ integer ] createFilter( filter = list(selectIds = "occ1==1", removeIds = "occ2!=3") ) # select the subjects whose first occasion level is '1' and whose second one is different from '3' ---------------------------------------------------------------------------------------- TIME [ double ] createFilter( filter = list(removeIds='TIME>120') ) # remove the subjects who have time over 120 createFilter( filter = list(selectLines='TIME>120') ) # remove the all the lines where the time is over 120 ---------------------------------------------------------------------------------------- OBSERVATION [ double ] createFilter( filter = list(selectLines = "CONC>=5.5", removeLines = "CONC>10")) # select the lines where CONC value superior or equal to 5.5 or strictly higher than 10 createFilter( filter = list(removeIds = "CONC<0") ) # remove subjects who have negative CONC values createFilter( filter = list(removeIds = "E==0") ) # remove subjects for who E equals 0 ---------------------------------------------------------------------------------------- OBSID [ character ] createFilter( filter = list(removeIds = "y1==1") ) # remove subject who have at least one observation for y1 createFilter( filter = list(selectLines = "y1!=2") ) # select all lines corresponding to observations exepected those for y2 ---------------------------------------------------------------------------------------- AMOUNT [ double ] createFilter( filter = list(selectIds = "AMOUT==10") ) # select subjects who have a dose equals to 10 ---------------------------------------------------------------------------------------- INFUSION RATE AND INFUSION DURATION [ double ] createFilter( filter = list(selectIds = "RATE<10") ) # select subjects who have dose with a rate less than 10 ---------------------------------------------------------------------------------------- COVARIATE [ character (categorical) | double (continuous) ] createFilter( filter = list(selectIds = "SEX==M", selectIds = "WEIGHT<80") ) # select subjects who are men and whose weight is lower than 80kg ---------------------------------------------------------------------------------------- REGERSSOR [ double ] createFilter( filter = list(selectLines = "REG>10") ) # select the lines where the regressor value is over 10 ---------------------------------------------------------------------------------------- COMPLEMENT createFilter(origin = "data_filtered", filter = "complement" ) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Delete additional covariate
Description
Delete a created additinal covariate.
Usage
deleteAdditionalCovariate(name)
Arguments
name |
(character) name of the covariate. |
See Also
Click here to see examples
# deleteAdditionalCovariate("firstDoseAmount")\cr deleteAdditionalCovariate("observationNumberPerIndividual_y1") ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Delete filter
Description
Delete a data set. Only filtered data set which are not active and whose children are not active either can be deleted.
Usage
deleteFilter(name)
Arguments
name |
(character) data set name. |
See Also
Click here to see examples
# deleteFilter(name = "filter2") ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Edit filter
Description
Edit the definition of an existing filtered data set. Refere to createFilter for more details about syntax, allowed parameters and examples.
Notice that all the filtered data set which depend on the edited one will be deleted.
Usage
editFilter(filter, name = "")
Arguments
filter |
(list< list< action = "headerName-comparator-value" > >) filter definition. |
name |
(character) [optional] data set name to edit (current one by default) |
See Also
[Monolix – PKanalix] Adapt and export a data file as a MonolixSuite formatted data set.
Description
Adapt and export a data file as a MonolixSuite formatted data set.
Usage
formatData(
dataFile,
formattedFile,
headerLines = 1,
headers,
linesToExclude = NULL,
observationSettings = NULL,
observations = NULL,
treatmentSettings = NULL,
treatments = NULL,
additionalColumns = NULL,
sheet = NULL
)
Arguments
dataFile |
(character) Path to the original data file (csv, xlsx, xlsx, sas7bdat, xpt or txt). Can be absolute or relative to the current working directory. |
formattedFile |
(character) Path to the data file that will be exported (must end with the .csv, .txt, .tsv or .xpt extension). |
headerLines |
(optional) (integer or vector<integer>) Line numbers containing headers (if multiple numbers are given, formatted headers will contain values from all header lines concatenated with the "_" character) – default: 1. |
headers |
(list) List of headers or indexes for columns containing information about ID, time, volume (in case of urine data) and sort columns. If the headers are changed by Data Formatting, the original headers should be given.
|
linesToExclude |
(optional) (integer or vector<integer>) Numbers of lines that should be removed from the data set. |
observationSettings |
(optional) (list) List containing settings applied when different observation columns are merged into a single column.
|
observations |
(optional) (list) List of lists containing information about different observation types:
|
treatmentSettings |
(optional) (list) List containing settings applied to all treatments.
|
treatments |
(optional) (list or character) List that can contain lists with information about different treatments or strings with paths to files that contain treatment information. Lists with information about different treatments need to have the following elements:
Path to files that contain treatment information can be just one path (csv, xlsx, xlsx, sas7bdat, xpt or txt, absolute or relative to the current working directory),
or a list of lists with 2 elements to specify for each treatment an xls/xlsx file and sheet in the excel file:
|
additionalColumns |
(optional) (character or vector<character>) Path(s) to the file(s) containing additional columns (needs to have the ID column). Accepted formats are csv, xlsx, xlsx, sas7bdat, xpt or txt. It can be just one path, or a list of paths (to use columns from several external files):
or a list of lists with 2 elements to specify an xls/xlsx file and sheet in the excel file:
|
sheet |
[optional] (character): Name of the sheet in xlsx/xls file. If not provided, the first sheet is used. |
Details
Data formatting can be performed as in the Data Formatting Tab of Monolix and PKanalix interface. Look at the examples to see how each data formatting demo project could be created with the connectors.
See Also
Click here to see examples
# initializeLixoftConnectors(software = "pkanalix") FormattedDataPath = tempfile("formatted_data", fileext = ".csv") formatData(paste0(getDemoPath(),"/0.data_formatting/data/units_BLQ_tags_data.csv"), formattedFile = FormattedDataPath, headerLines = c(1,2), headers = c(id="ID", time="TIME"), observations = list(header="CONC", censoring = list(type="interval", tags = c("BLQ"), limits=list(0,"LLOQ"))), treatments = list(times=0, amount=100)) colnames(read.csv(FormattedDataPath)) # to check column names of the generated file and tag them as desired newProject(data = list(dataFile = FormattedDataPath, headerTypes = c("id","time","observation","contcov","contcov","catcov","ignore","amount","cens","limit"))) plotObservedData() # demo merge_occ_ParentMetabolite.pkx formatData(paste0(getDemoPath(),"/0.data_formatting/data/parent_metabolite_data.csv"), formattedFile = FormattedDataPath, headers = c(id="ID", time="TIME"), observations = list(list(header="PARENT", censoring = list(type="interval", tags = c("BLQ"), limits=list(0,0.01))), list(header="METABOLITE")), observationSettings = list(distinguishWithObsId = FALSE), treatments = list(times=0, amount="DOSE")) # demo merge_obsID_ParentMetabolite.pkx formatData(paste0(getDemoPath(),"/0.data_formatting/data/parent_metabolite_data.csv"), formattedFile = FormattedDataPath, headers = c(id="ID", time="TIME"), observations = list(list(header="PARENT", censoring = list(type="interval", tags = c("BLQ"), limits=list(0,0.01))), list(header="METABOLITE")), treatments = list(times=0, amount="DOSE")) # demo DoseAndLOQ_byCategory.pkx formatData(paste0(getDemoPath(),"/0.data_formatting/data/units_BLQ_tags_data.csv"), formattedFile = FormattedDataPath, headerLines = c(1,2), headers = c(id="ID", time="TIME"), observations = list(header="CONC", censoring = list(type="interval", tags = c("BLQ"), limits=list(0,list(category="STUDY", values=list("SD_400mg"=0.01, "SD_500mg"=0.1, "SD_600mg"=0.1))))), treatments = list(times=0, amount=list(category="STUDY", values=list("SD_400mg"=400, "SD_500mg"=500, "SD_600mg"=600)))) # demo DoseAndLOQ_fromData.pkx formatData(paste0(getDemoPath(),"/0.data_formatting/data/units_BLQ_tags_data.csv"), formattedFile = FormattedDataPath, headerLines = c(1,2), headers = c(id="ID", time="TIME"), observations = list(header="CONC", censoring = list(type="interval", tags = c("BLQ"), limits=list(0,"LLOQ"))), treatments = list(times=0, amount="STUDY")) # demo DoseAndLOQ_manual.pkx formatData(paste0(getDemoPath(),"/0.data_formatting/data/units_multiple_BLQ_tags_data.csv"), formattedFile = FormattedDataPath, headerLines = c(1,2), headers = c(id="ID", time="TIME"), observations = list(header="CONC", censoring = list(list(type="interval", tags = c("BLQ1"), limits=list(0,0.06)), list(type="interval", tags = c("BLQ2"), limits=list(0,0.1)))), treatments = list(times=0, amount=600)) # demo Urine_LOQinObs.pkx formatData(paste0(getDemoPath(),"/0.data_formatting/data/urine_LOQinObs_data.csv"), formattedFile = FormattedDataPath, headers = c(id="ID", start="START TIME", end="END TIME", volume="VOLUME"), observations = list(header="CONC", censoring=list(type="LLOQ", tags="<LOQ=1>", limits="CONC")), treatments = list(paste0(getDemoPath(),"/0.data_formatting/data/urine_data_doses.csv"))) # demo CreateOcc_AdmIdbyCategory.pkx formatData(paste0(getDemoPath(),"/0.data_formatting/data/two_formulations_data.csv"), formattedFile = FormattedDataPath, linesToExclude = 1, headerLines = c(2,3), headers = c(id="ID", time="TIME", sort="FORM"), observations = list(header="CONC", censoring=list(type="LLOQ", tags="BLQ", limits=0.06)), treatments = list(times=0, amount=600, admId=list(category="FORM", values=list("ref"=1,"test"=2)))) # MONOLIX EXAMPLES initializeLixoftConnectors(software = "monolix") FormattedDataPath = tempfile("formatted_data") # demo doseIntervals_as_Occ.mlxtran formatData(paste0(getDemoPath(),"/0.data_formatting/data/data_multidose.csv"), formattedFile = FormattedDataPath, headers = c(id="ID", time="TIME"), observations = list(header="CONC"), treatments = list(times=seq(0,by=12,length=7), amount=40), treatmentSettings = list(doseIntervalsAsOccasions = TRUE)) # demo warfarin_PKPDseq_project.mlxtran formatData(paste0(getDemoPath(),"/0.data_formatting/data/warfarin_data.csv"), formattedFile = FormattedDataPath, headers = c(id="id", time="time"), additionalColumns = paste0(getDemoPath(),"/0.data_formatting/data/warfarinPK_regressors.txt"))
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Get data sets descriptions
Description
Get information about the data sets and filters defined in the project.
Usage
getAvailableData()
Value
A list containing a list containing elements that describe the data set:
-
name
: (character) the name of the data set -
file
: (character) the path of the data set file -
current
: a logical indicating if the data set is applied (currently in use) -
children
: a list containing lists with information about data sets created from this one using filters -
filter
(only if the dataset was created using filters): a list containing name of theparent
and details about filterdefinition
Click here to see examples
# getAvailableData() ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Get covariates information
Description
Get the name, the type and the values of the covariates present in the project.
Usage
getCovariateInformation()
Value
A list containing the following fields :
- name (vector<character>): covariate names
- type (vector<character>): covariate types. Existing types are "continuous", "continuoustransformed", "categorical", "categoricaltransformed"./
In Monolix mode, "latent" covariates are also allowed. - range (vector<pair<double>>): continuous covariate ranges
- categories (vector<vector<character>>): discrete covariates modalities
- [Monolix] modalityNumber (vector<integer>): number of modalities (for latent covariates only)
- covariate: a data frame giving the values of continuous and categorical covariates for each subject.
Latent covariate values exist only if they have been estimated, ie if the covariate is used and if the population parameters have been estimated.
Call getEstimatedIndividualParameters to retrieve them.
Click here to see examples
# info = getCovariateInformation() # Monolix mode with latent covariates info -> $name c("sex","wt","lcat") -> $type c(sex = "categorical", wt = "continuous", lcat = "latent") -> $range list(wt = c(55, 73.5)) -> $categories c(sex = c("F", "M")) -> $modalityNumber c(lcat = 2) -> $covariate id sex wt 1 M 66.7 . . . N F 59.0 ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Get data formatting from a loaded project
Description
Get data formatting settings from a loaded project.
It returns a list with the same items as the arguments of formatData, where the header
items correspond to formatted headers if they have been changed by Data Formatting, and in addition:
-
originalHeaders
(character) – list of original names of the columns used for data formatting.
Usage
getFormatting()
See Also
Click here to see examples
# initializeLixoftConnectors(software = "pkanalix") loadProject(paste0(getDemoPath(),"/0.data_formatting/DoseAndLOQ_manual.pkx")) getFormatting() }
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Get observations information
Description
Get the name, the type and the values of the observations present in the project.
Usage
getObservationInformation()
Value
A list containing the following fields :
- name (vector<character>): observation names.
- type (vector<character>): observation generic types. Existing types are "continuous", "discrete", "event".
- [Monolix] detailedType (vector<character>): observation specialized types set in the structural model. Existing types are "continuous", "bsmm", "wsmm", "categorical", "count", "exactEvent", "intervalCensoredEvent".
- [Monolix] mapping (vector<character>): mapping between the observation names (defined in the mlxtran project) and the name of the corresponding entry in the data set.
- ["obsName"] (data.frame): observation values for each observation id.
In PKanalix mode, the observation type is not provided as only continuous observations are allowed. Neither do the mapping as dataset names are always used.
Click here to see examples
# info = getObservationInformation() info -> $name c("concentration") -> $type # [Monolix] c(concentration = "continuous") -> $detailedType # [Monolix] c(concentration = "continuous") -> $mapping # [Monolix] c(concentration = "CONC") -> $concentration id time concentration 1 0.5 0.0 . . . N 9.0 10.8 ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Get treatments information
Description
Get information about doses present in the loaded dataset.
Usage
getTreatmentsInformation()
Value
A dataframe whose columns are:
- id and occasion level names (character)
- time (double)
- amount (double)
- [optional] administrationType (integer)
- [optional] infusionTime (logical)
- [optional] isArtificial (logical): is created from SS or ADDL column
- [optional] isReset (logical): IOV case only
Click here to see examples
# ## Not run: initializeLixoftConnectors("monolix") project_name <- file.path(getDemoPath(), "6.PK_models", "6.3.multiple_doses", "ss1_project.mlxtran") loadProject(project_name) getTreatmentsInformation() ## End(Not run) }
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Remove filter
Description
Remove the last filter applied on the current data set.
Usage
removeFilter()
See Also
Click here to see examples
# removeFilter() ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Rename additional covariate
Description
Rename an existing additional covariate.
Usage
renameAdditionalCovariate(oldName, newName)
Arguments
oldName |
(character) current name of the covariate to rename |
newName |
(character) new name. |
See Also
Click here to see examples
# renameAdditionalCovariate(oldName = "observationNumberPerIndividual_y1", newName = "nbObsForY1") ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Rename filter
Description
Rename an existing filtered data set.
Usage
renameFilter(newName, oldName = "")
Arguments
newName |
(character) new name. |
oldName |
(character) [optional] current name of the filtered data set to rename (current one by default) |
See Also
Click here to see examples
# renameFilter("newFilter")\cr renameFilter(oldName = "filter", newName = "newFilter") ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Select data set
Description
Select the new current data set within the previously defined ones (original and filters).
Usage
selectData(name)
Arguments
name |
(character) data set name. |
See Also
Click here to see examples
# selectData(name = "filter1") ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get data used for CA computation.
Description
Get the data as it is used for CA.
Usage
getCAData()
Click here to see examples
# data = getCAData() ID time concentration censored 1 1 0.0 0.00 FALSE 2 1 0.5 3.05 FALSE 3 1 2.0 5.92 TRUE ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get data used for NCA estimation
Description
Get the data as it is used for NCA.
Usage
getNCAData()
Click here to see examples
# data = getNCAData() ID time concentration censored 1 1 0.0 0.00 FALSE 2 1 0.5 3.05 FALSE 3 1 2.0 5.92 TRUE ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Initialize lixoftConnectors API
Description
Initialize lixoftConnectors API for a given software.
Usage
initializeLixoftConnectors(software = "monolix", path = "", force = FALSE)
Arguments
software |
(character) [optional] Name of the software to be loaded. By default, "monolix" software is used. |
path |
(character) [optional] Path to installation directory of the Lixoft suite. If lixoftConnectors library is not already loaded and no path is given, the directory written in the lixoft.ini file is used for initialization. |
force |
(logical) [optional] Should software switch security be overpassed or not. Equals FALSE by default. |
Value
A logical equaling TRUE if the initialization has been successful and FALSE if not.
Click here to see examples
# initializeLixoftConnectors(software = "monolix", path = "/path/to/lixoftRuntime/") ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Get Lixoft demos path
Description
Get the path to the demo projects. The path depends on the software used to initialize the connectors with initializeLixoftConnectors.
Usage
getDemoPath()
Value
The Lixoft demos path corresponding to the currently active software.
Click here to see examples
# getDemoPath() ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Generate Bivariate observations plots
Description
Plot the bivariate viewer.
Usage
plotBivariateDataViewer(
obs1 = NULL,
obs2 = NULL,
settings = list(),
stratify = list(),
preferences = list()
)
Arguments
obs1 |
(character) Name of the observation to display in x axis (in dataset header). By default the first observation is considered. |
|||||||
obs2 |
(character) Name of the observation to display in y axis (in dataset header). By default the second observation is considered. |
|||||||
settings |
List with the following settings
|
|||||||
stratify |
List with the stratification arguments:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotBivariateDataViewer") to check available displays. |
Value
A ggplot object
See Also
Click here to see examples
# project <- file.path(getDemoPath(), "1.creating_and_using_models", "1.1.libraries_of_models", "warfarinPKPD_project.mlxtran") loadProject(project) plotBivariateDataViewer(obs1 = "y1", obs2 = "y2") plotBivariateDataViewer(settings = list(lines = FALSE)) # stratification plotBivariateDataViewer(obs1 = "y1", obs2 = "y2", stratify = list(individualSelection = list(indices = 10))) plotBivariateDataViewer(stratify = list(split = "age", filter = list("sex", "1"), groups = list(name = "age", definition = c(25)))) plotBivariateDataViewer(stratify = list(color = "wt", groups = list(name = "wt", definition = 75))) plotBivariateDataViewer(stratify = list(split = c("age", "sex"), groups = list(name = "age", definition = 25))) # update plot settings or preferences plotBivariateDataViewer(preferences = list(obs = list(color = "#32CD32")))
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Generate Covariate plots
Description
Plot the covariates.
Usage
plotCovariates(
covariatesRows = NULL,
covariatesColumns = NULL,
settings = list(),
preferences = list(),
stratify = list()
)
Arguments
covariatesRows |
vector with the name of covariates to display on rows (by default the first 4 covariates are displayed). |
|||||||
covariatesColumns |
vector with the name of covariates to display on columns (by default the first 4 covariates are displayed). |
|||||||
settings |
List with the following settings
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotCovariates") to check available displays. |
|||||||
stratify |
List with the stratification arguments:
|
Details
Generate scatterplots between two continuous covariates or bar plot between categorical covariates.
Value
- A ggplot object if one element in covariatesRows and covariatesColumns,
- A TableGrob object if multiple plots (output of grid.arrange)
See Also
Click here to see examples
# project <- file.path(getDemoPath(), "2.case_studies/project_Theo_extravasc_SD.pkx") loadProject(project) # covariate distribution when only one covariate is specified plotCovariates(covariatesRows = "HT", settings = list(bins = 10)) # scatter plot when both covariates are continuous plotCovariates(covariatesRows = "HT", covariatesColumns = "AGE", settings = list(spline = TRUE)) plotCovariates(covariatesRows = "HT", covariatesColumns = c("AGE", "FORM")) # box plot when one covariate is categorical and the othe one is continuous preferences <- list(boxplot = list(fill = "#2075AE"), boxplotOutlier = list(shape = 3)) plotCovariates(covariatesRows = "FORM", covariatesColumns = "AGE", preferences = preferences) # histogram when covariate on column is categorical plotCovariates(covariatesRows = "FORM", covariatesColumns = "SEQ", settings = list(histogramColors = c("#5DC088", "#DBA92B"))) plotCovariates(covariatesRows = "AGE", covariatesColumns = "SEQ", settings = list(histogramColors = c("#5DC088", "#DBA92B"))) # stratification plotCovariates(covariatesRows = "HT", covariatesColumns = "WT", stratify = list(split = "AGE", filter = list("Period", 1), groups = list(name = "AGE", definition = 25))) preferences <- list(regressionLine = list(color = "#E5551B")) plotCovariates(covariatesRows = "AGE", covariatesColumns = "WT", stratify = list(color = "HT", groups = list(name = "HT", definition = 181), colors = c("#2BB9DB", "#DD6BD2")), preferences = preferences) plotCovariates(covariatesRows = "HT", covariatesColumns = "WT", stratify = list(split = c("AGE", "SEQ"), groups = list(name = "AGE", definition = 25))) # Mulitple covariates plotCovariates() plotCovariates(covariatesRows = c("AGE", "SEQ", "HT"), covariatesColumns = c("AGE", "SEQ", "HT")) plotCovariates(stratify = list(filter = list("AGE", 2), groups = list(name = "AGE", definition = c(25, 30))))
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Generate Observed data plot
Description
Plot the observed data.
Usage
plotObservedData(
obsName = NULL,
settings = list(),
stratify = list(),
preferences = list()
)
Arguments
obsName |
(character) Name of the observation (if several OBS ID). By default the first observation is considered. |
|||||||
settings |
List with the following settings: [CONTINUOUS – DISCRETE] Settings specific to continuous and discrete data
[DISCRETE] Settings specific to discrete data
[EVENT] Settings specific to event data
Other settings
|
|||||||
stratify |
List with the stratification arguments:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotObservedData") to check available options. |
Value
A ggplot object
See Also
Click here to see examples
# project <- paste0(getDemoPath(), "/2.case_studies/project_aPCSK9_SAD.pkx") loadProject(project) # by default, individual profiles and mean curve are displayed plotObservedData() # displaying dots and mean curve by dose group, merged on a single plot plotObservedData(settings=list(lines=F, mean=T, meanMethod="geometric", ylog=T, ylab="mAb concentration (ug/mL)"), stratify=list(split="DOSE_mg", mergedSplits=T), preferences=list(observationStatistics=list(lineWidth=0.8), obs=list(radius=2))) # coloring by ID, without mean curve plotObservedData(settings=list(mean=F,error=F), stratify = list(color=c("id"))) # changing the settings to display only the mean curve with SE, with bin limits and dosing times plotObservedData(settings=list(dots=F, lines=F, mean=T, error=T, meanMethod="geometric", errorMethod="standardError", useCensored=T, binLimits=T, binsSettings=list(criteria="leastsquare", is.fixedNbBins=T, nbBins=20), cens=F, dosingTimes=T, legend=T, grid=F, xlog=F,ylog=T, xlab="Time since first dose (days)", ylab="mAb concentration (ug/mL)", xlim=c(0,96), ylim=c(0.1,70), fontsize=12, units=F)) # changing preferences for observations, censored observations and bin limits plotObservedData(settings=list(dots=T, lines=T, legend=T, dosingTimes=T, mean=F, error=F, ylog=T, cens=T), preferences=list(obs=list(color="#161617", radius=2, shape=18, lineWidth=0.2, lineType="dashed", legend="Observations"), censObs=list(color="#cdced1", radius=2, shape=16, legend="Censored observations"), dosingTimes=list(color="#fcba03", lineWidth=0.5, lineType="solid", legend="Time of doses"))) # changing preferences for mean and bin limits plotObservedData(settings=list(dots=F, lines=F, legend=T, binLimits=T, grid=F), preferences=list(observationStatistics=list(color="#161617", whiskersWidth=3, lineWidth=0.7, lineType="solid", legend="mean and standard deviation over bins"), binsValues=list(color="#cdced1", lineWidth=0.5, lineType="dashed", legend="bins"))) # color and split by DOSE_mg but grouping two doses levels together plotObservedData(settings=list(mean=F,error=F,ylim=c(0,120)), stratify = list(groups=list(name="DOSE_mg",definition=list(c("150mg"), c("300mg","800mg"))), color="DOSE_mg", split="DOSE_mg")) # selecting only one individual plotObservedData(settings=list(mean=F,error=F), stratify = list(individualSelection=list(indices=1))) plotObservedData(settings=list(mean=F,error=F), stratify = list(individualSelection=list(ids="1"))) #============= projects with several covariates to stratify initializeLixoftConnectors(software = "pkanalix", force=T) project <- file.path(getDemoPath(), "/2.case_studies/project_Theo_extravasc_SD.pkx") loadProject(project) # defining groups for AGE and HT, coloring by HT and filtering by AGE plotObservedData(settings=list(mean=F,error=F), stratify = list(groups=list(list(name="AGE", definition=c(24, 34)), list(name="HT", definition=c(184.5))), color="HT", colors=c("#cdced1","#161617"), filter=list("AGE",c(1,3)))) # filter to keep only second sequence (TR) and FORM=test plotObservedData(settings=list(mean=F,error=F), stratify = list(filter=list(list("SEQ",2),list("FORM","test")))) #============= project with time-to-event data initializeLixoftConnectors(software = "monolix", force=T) project <- file.path(getDemoPath(), "/4.joint_models/4.2.continuous_noncontinuous/PKrtte_project.mlxtran") loadProject(project) # survival Kaplan-Meier curve plotObservedData(obsName="Hemorrhaging") # mean number of events plotObservedData(obsName="Hemorrhaging", settings=list(eventPlot="averageEventNumber")) #============= project with categorical data initializeLixoftConnectors(software = "monolix", force=T) project <- file.path(getDemoPath(), "/4.joint_models/4.2.continuous_noncontinuous/warfarin_cat_project.mlxtran") loadProject(project) # display is the same as for continuous data by default plotObservedData(obsName="Level") # display as stacked or as grouped plotObservedData(obsName="Level", settings=list(plot="stacked")) plotObservedData(obsName="Level", settings=list(plot="grouped")) # splitting by sex plotObservedData(obsName="Level", settings=list(plot="stacked", ylim=c(0,30), legend=T), stratify=list(split="sex")) #============== project with multiple-dose to show timeAfterLastDose initializeLixoftConnectors(software = "monolix", force=T) project <- file.path(getDemoPath(), "/6.PK_models/6.3.multiple_doses/addl_project.mlxtran") loadProject(project) # with "time after first dose" by default plotObservedData() # with "time since previous dose" plotObservedData(settings=list(timeAfterLastDose=T)) #============= project with regressor to show regressor on x-axis initializeLixoftConnectors(software = "monolix", force=T) project <- file.path(getDemoPath(), "/7.miscellaneous/7.1.regression_variables/reg3_warfarinPD_linearInterp_project.mlxtran") loadProject(project) # with "time" on x-axis by default plotObservedData() # with regressor "Cc" (concentration) on x-axis plotObservedData(settings=list(xvariable="Cc")) #============= project with nominal time on x-axis initializeLixoftConnectors(software = "pkanalix", force=T) project <- file.path(getDemoPath(), "/1.basic_examples/project_nominal_time.pkx") loadProject(project) # with "actual time" by default plotObservedData() # with nominal time on x-axis plotObservedData(settings=list(xvariable="nominalTime"))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] BE Confidence Intervals plot
Description
Plot the individual NCA parameters vs covariates.
Usage
plotBEConfidenceIntervals(
parameters = NULL,
formulations = NULL,
settings = list(),
preferences = NULL
)
Arguments
parameters |
vector of bioequivalence parameters to display. (by default the first 4 computed parameters are displayed). |
formulations |
vector of test formulations to display. (by default the first 4 test formulations are displayed). |
settings |
List with the following settings
|
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotBEConfidenceIntervals") to check available displays. |
Value
- A ggplot object if one parameter,
- A TableGrob object if multiple plots (output of grid.arrange)
See Also
Click here to see examples
# project <- file.path(getDemoPath(), "2.case_studies/project_Theo_extravasc_SD.pkx") loadProject(project) runNCAEstimation() runBioequivalenceEstimation() plotBEConfidenceIntervals() plotBEConfidenceIntervals(parameters = "Cmax", settings = list(legend = T))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Plot the bioequivalence sequence-by-period
Description
Plot the bioequivalence parameters as sequence-by-period.
The https://pkanalix.lixoft.com/bioequivalence/sequence-by-period-plot/sequence-by-period plot allows to visualize, for each parameter, the mean and standard deviation for each period, sequence and formulation.
Usage
plotBESequenceByPeriod(
parameters = NULL,
settings = list(),
preferences = NULL,
stratify = list()
)
Arguments
parameters |
(vector<character>) vector of NCA parameters (included in BE calculations) to display. (by default the first 4 computed parameters are displayed). |
|||||||
settings |
List with the following settings:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotBESequenceByPeriod") to check available options. |
|||||||
stratify |
List with the stratification arguments:
|
Value
- A ggplot object if only one parameter is given in
parameters
- A TableGrob object if multiple plots (output of grid.arrange)
See Also
Click here to see examples
# project <- file.path(getDemoPath(), "/3.bioequivalence/project_crossover_bioequivalence.pkx") loadProject(project) runNCAEstimation() runBioequivalenceEstimation() # display by default plotBESequenceByPeriod() # select only a subplot of parameters used for BE analysis plotBESequenceByPeriod(parameters = c("AUCINF_obs","Cmax")) # changing the settings plotBESequenceByPeriod(parameters = c("AUCINF_obs","Cmax"), settings=list(dots=T, lines=T, error=F, legend=T, grid=F, ylog=T, ncol=1, units=F, fontsize=9, xlab="Sequence of periods")) # changing the preferences plotBESequenceByPeriod(parameters = c("AUCINF_obs","Cmax"), settings=list(legend=T), preferences = list(formulationDot=list(radius=4, shape=18, legend="Formulations tested"), observationStatistics=list(color="#202120", whiskersWidth=1, lineWidth=1, lineType="solid", legend="Standard deviation"), sequence=list(color="#202120", lineWidth=1, lineType="dashed", legend="Sequences"))) # define groups of WT and split by WT plotBESequenceByPeriod(parameters = c("AUCINF_obs","Cmax"), stratify=list(groups=list(name="WT", definition=c(70)), split=c("WT"))) # define groups of AGE and WT and filter by AGE and WT plotBESequenceByPeriod(parameters = c("AUCINF_obs","Cmax"), stratify=list(groups=list(list(name="WT", definition=c(70)), list(name="AGE", definition=c(24,34))), filter=list(list("AGE",c(1,3)), list("WT",2))))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Plot subject-by-formulation
Description
Plot the Bioequivalence parameters as Subject-by-formulation.
Usage
plotBESubjectByFormulation(
parameters = NULL,
formulations = NULL,
settings = list(),
preferences = NULL,
stratify = list()
)
Arguments
parameters |
(vector<character>) vector of NCA parameters (included in BE calculations) to display. (by default the first 4 computed parameters are displayed). |
|||||||
formulations |
(vector<character>) vector of test (i.e non-ref) formulations to display. (by default the first 4 test formulations are displayed). |
|||||||
settings |
List with the following settings:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotBESubjectByFormulation") to check available options. |
|||||||
stratify |
List with the stratification arguments:
|
Value
- A ggplot object if only one parameter is given in
parameters
- A TableGrob object if multiple plots (output of grid.arrange)
See Also
Click here to see examples
# project <- file.path(getDemoPath(), "/3.bioequivalence/project_crossover_bioequivalence.pkx") loadProject(project) runNCAEstimation() runBioequivalenceEstimation() # display by default plotBESubjectByFormulation() # select only a subplot of parameters used for BE analysis # if several test formulations are compared w.r.t a reference formulation, it is also possible to select which test formulation to display plotBESubjectByFormulation(parameters = c("AUCINF_obs","Cmax"), formulations = c("test")) # changing the settings plotBESubjectByFormulation(parameters = c("AUCINF_obs","Cmax"), settings=list(dots=T, lines=T, legend=T, grid=F, ylog=T, units=F, fontsize=9)) # changing the preferences plotBESubjectByFormulation(parameters = c("AUCINF_obs","Cmax"), settings=list(legend=T), preferences = list(formulationDot=list(color="#202120", radius=4, shape=18, legend="NCA parameter for each formulation"), formulationLine=list(color="#202120", lineWidth=0.5, lineType="dashed", legend="Individuals"))) # define groups of WT and split by WT plotBESubjectByFormulation(parameters = c("AUCINF_obs","Cmax"), stratify=list(groups=list(name="WT", definition=c(70)), split=c("WT"))) # define groups of AGE and WT and filter by AGE and WT plotBESubjectByFormulation(parameters = c("AUCINF_obs","Cmax"), stratify=list(groups=list(list(name="WT", definition=c(70)), list(name="AGE", definition=c(24,34))), filter=list(list("AGE",c(1,3)), list("WT",2))))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Generate CA Fit plots
Description
Plot the CA individual fits.
Usage
plotCAIndividualFits(
obsName = NULL,
settings = list(),
preferences = list(),
stratify = list()
)
Arguments
obsName |
(character) Name of the observation (if several OBS ID are used). By default the first observation is considered. |
|||||||
settings |
List with the following settings:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotCAIndividualFits") to check available displays. |
|||||||
stratify |
List with the stratification arguments. Stratification is not available in case "sparse data" calculations are used.
|
Value
A ggplot object
See Also
Click here to see examples
# project <- file.path(getDemoPath(), "/2.case_studies/project_Theo_extravasc_SD.pkx") loadProject(project) runCAEstimation() # by default 12 individuals are displayed (with 2 occasions each in this example) plotCAIndividualFits() # loop to create several plots ("pages") with 6 individuals (2 occasions each) per page, using "indices" and "isRange" nbIndiv <- 18 nbIndivPerPage <- 6 nbPages <- ceiling(nbIndiv/nbIndivPerPage) for(i in 1:nbPages){ plotCAIndividualFits(stratify = list(individualSelection=list(indices=c(nbIndivPerPage*(i-1)+1,nbIndivPerPage*i), isRange=T))) } # selection of individuals based on id names plotCAIndividualFits(stratify = list(individualSelection=list(ids=c("6","17")))) plotCAIndividualFits(stratify = list(individualSelection=list(ids=c(6, 17)))) # changing the elements to display plotCAIndividualFits(settings = list(obsDots=T, obsLines=T, cens=T, dosingTimes=T, splitOccasions=T, ncol=5, legend=T, grid=F, ylog=T, units=F, fontsize=9, ylim=c(0.05,15), ylab="Theophylline concentration (ug/mL)")) # get available preferences getPlotPreferences("plotCAIndividualFits") # change color, radius, shape, lineType, lineWidth and legend for all elements plotCAIndividualFits(settings = list(legend=T, obsLines=T, dosingTimes=T), stratify = list(individualSelection=list(ids=c(1,2,3,4))), preferences = list(obs=list(color="#161617", radius=2, shape=18, lineWidth=0.5, lineType="dashed", legend="Measured concentrations"), censObsIntervals=list(color="#cdced1", opacity=1, lineType="solid", lineWidth=1, legend="BLQ observations"), dosingTimes=list(color="#ff793f", lineWidth=1, lineType="solid", legend="Time of doses"), indivFits=list(color="#00a4c6", lineWidth=1, lineType="solid", legend="Individual predictions"))) # define groups for AGE and color by AGE and FORM plotCAIndividualFits(settings=list(legend=T), stratify = list(groups=list(name="AGE", definition=c(24, 34)), color=c("AGE","FORM"), individualSelection=list(ids=c(1,2,3,4)))) # filter to keep only individuals with sequence "RT" (first among "RT" and "TR") plotCAIndividualFits(stratify = list(filter=list(list("SEQ","RT")))) plotCAIndividualFits(stratify = list(filter=list(list("SEQ",1))))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Plot observations vs the CA predictions.
Description
Plot the observations vs the CA predictions.
Usage
plotCAObservationsVsPredictions(
obsName = NULL,
settings = list(),
preferences = list(),
stratify = list()
)
Arguments
obsName |
(character) Name of the observation (if several OBS ID are used). By default the first observation id is considered. |
|||||||
settings |
List with the following settings:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotCAObservationsVsPredictions") to check available options. |
|||||||
stratify |
List with the stratification arguments:
|
Value
- A ggplot object if one prediction type,
- A TableGrob object if multiple plots (output of grid.arrange)
See Also
getChartsData getPlotPreferences
Click here to see examples
# loadProject(project) setCASettings(blqMethod="LOQ") #not recommended but allows to show plot settings related to censored data runCAEstimation() # plot with default options plotCAObservationsVsPredictions() # changing the elements to display plotCAObservationsVsPredictions(settings=list(spline=T, useCensored=T, cens=T, identityLine=F, legend=T, grid=F, xlog=T, ylog=T, xlim=c(0.01,20), ylim=c(0.01,20), fontsize=9, xlab=c('Individual CA predictions'), ylab=c('Theophylline measurements (obs)'))) # coloring by FORM and Period using a greyscale plotCAObservationsVsPredictions(settings = list(legend=T), stratify = list(color=c("FORM", "Period"), colors=c("#cdced1","#97989c","#4c4d4f","#161617"))) # coloring by FORM and filtering to keep only SEQ=TR plotCAObservationsVsPredictions(settings = list(legend=T), stratify = list(color=c("FORM"), filter=list("SEQ","TR"))) # defining groups for AGE and HT, coloring by AGE and splitting by HT plotCAObservationsVsPredictions(settings = list(legend=T, cens=F), stratify = list(groups=list(list(name="AGE", definition=c(24, 34)), list(name="HT", definition=180)), color="AGE", colors=c("#00a4c6","#64bc48","#ff793f"), split="HT"))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Correlation between CA individual parameters.
Description
Plot the correlation bewteen CA individual parameters.
Usage
plotCAParametersCorrelation(
parametersRows = NULL,
parametersColumns = NULL,
settings = list(),
preferences = list(),
stratify = list()
)
Arguments
parametersRows |
(vector<character>) vector with the name of CA parameters to display on rows (by default the first 4 computed parameters are displayed). |
|||||||
parametersColumns |
(vector<character>) vector with the name of CA parameters to display on columns (by default parametersColumns = parametersRows). |
|||||||
settings |
List with the following settings:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotCAParametersCorrelation") to check available displays. |
|||||||
stratify |
List with the stratification arguments:
|
Value
- A ggplot object if one element in parametersRows and parametersColumns,
- A TableGrob object if multiple plots (output of grid.arrange)
See Also
Click here to see examples
# project <- file.path(getDemoPath(), "/2.case_studies/project_Theo_extravasc_SD.pkx") loadProject(project) runCAEstimation() # by default only the 4 first CA parameters are shown plotCAParametersCorrelation() # choosing to display only a subset of possible covariates and CA parameters (same param on rows and columns) plotCAParametersCorrelation(parametersRows = c("Cl","V")) # selecting different parameters on rows and columns plotCAParametersCorrelation(parametersRows = c("Cl","V"), parametersColumns = c("Tlag","ka")) # changing the settings to choose which elements to display plotCAParametersCorrelation(settings = list(regressionLine=F, spline=T, legend=T, grid=F, units=F, fontsize=8)) # changing the preferences (appearance of the elements) plotCAParametersCorrelation(parametersRows = c("Cl","V"), settings=list(legend=T, spline=T), preferences = list(obs=list(color="#202120", radius=2, shape=18, legend="CA parameter values"), regressionLine=list(color="#202120", lineWidth=1, lineType="dashed", legend="Linear regression line"), spline=list(color="#97989c", lineWidth=1, lineType="solid", legend="Spline regression line"))) # split each plot into two subplot for FORM=ref and FORM=test, vertically (ncol=1) plotCAParametersCorrelation(parametersRows = c("ka","Cl","V"), settings=list(ncol=1), stratify = list(split=c("FORM"))) # define groups for AGE and HT, color by HT and filter by AGE plotCAParametersCorrelation(settings=list(legend=T), parametersRows = c("Cl","V"), stratify = list(groups=list(list(name="AGE", definition=c(30, 35)), list(name="HT", definition=c(184.5))), color="HT", colors=c("#cdced1","#161617"), filter=list("AGE",c(1,3)))) # filter to keep only second sequence (TR) and FORM=test plotCAParametersCorrelation(settings=list(legend=T), parametersRows = c("Cl","V"), stratify = list(filter=list(list("SEQ",2),list("FORM","test"))))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Distribution of the individual CA parameters
Description
Plot the distribution of the individual CA parameters.
Usage
plotCAParametersDistribution(
parameters = NULL,
settings = list(),
preferences = list(),
stratify = list()
)
Arguments
parameters |
(vector<character>) vector of CA parameters to display. (by default the first 12 computed ca parameters are displayed). |
|||||||
settings |
List with the following settings:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotCAParametersDistribution") to check available options. |
|||||||
stratify |
List with the stratification arguments:
|
Value
- A ggplot object if only one parameter is specified in
parameters
- A TableGrob object if multiple plots (output of grid.arrange)
See Also
Click here to see examples
# project <- file.path(getDemoPath(), "/2.case_studies/project_Theo_extravasc_SD.pkx") loadProject(project) runCAEstimation() # plot a single parameter, as pdf or cdf plotCAParametersDistribution(parameters = "V", settings = list(plot = "pdf")) plotCAParametersDistribution(parameters = "Cl", settings = list(plot = "cdf")) # with a single parameter, a ggplot object if returned and additional ggplot elements can be added library(ggplot2) plotCAParametersDistribution(parameters = "V")+geom_vline(xintercept=52) # display 4 parameters in a 2x2 matrix (ncol=2) plotCAParametersDistribution(parameters = c('V','Cl','ka','Tlag'), settings = list(ncol=2)) # changing the settings to choose which elements to display plotCAParametersDistribution(parameters = c('V','Cl','ka','Tlag'), settings = list(ncol=2, units=F, legend=T, grid=F, fontsize=9)) # changing the preferences (appearance of the elements) when using plot="cdf" plotCAParametersDistribution(parameters = c('V','Cl','ka','Tlag'), settings = list(ncol=2, legend=T, plot="cdf"), preferences = list(empirical=list(color="#161617", lineWidth=1, lineType="solid", legend="cumulative density distribution"))) # changing the preferences (appearance of the elements) when using plot="pdf" plotCAParametersDistribution(parameters = c('V','Cl','ka','Tlag'), settings = list(ncol=2, legend=T, plot="pdf"), preferences = list(histogramBar=list(fill="#cdced1", opacity=0.7, stroke="#161617", strokeWidth=1, legend="probability density distribution"))) # split each plot into two subplots for FORM=ref and FORM=test plotCAParametersDistribution(parameters = c('V','Cl','ka','Tlag'), settings = list(ncol=2), stratify = list(split=c("FORM"))) # define groups for AGE and HT, filter by AGE and split by HT plotCAParametersDistribution(parameters = c('V','Cl','ka','Tlag'), settings=list(ncol=2), stratify = list(groups=list(list(name="AGE", definition=c(30, 35)), list(name="HT", definition=c(184.5))), filter=list("AGE",c(1,3)), split="HT")) # filter to keep only second sequence (TR) and Period=1 plotCAParametersDistribution(parameters = c('V','Cl','ka','Tlag'), settings=list(ncol=2), stratify = list(filter=list(list("SEQ",2),list("Period","1"))))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Individual CA parameter vs covariate plot
Description
Plot the CA individual parameters vs covariates.
Usage
plotCAParametersVsCovariates(
parameters = NULL,
covariates = NULL,
settings = list(),
preferences = list(),
stratify = list()
)
Arguments
parameters |
(vector<character>) vector of ca parameters to display, e.g c("V", "Cl") (by default the first 4 computed ca parameters are displayed). |
|||||||
covariates |
(vector<character>) vector of covariates to display, e.g c("AGE", "FORM") (by default the first 4 covariates are displayed). |
|||||||
settings |
List with the following settings:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotCAParametersVsCovariates") to check available options. |
|||||||
stratify |
List with the stratification arguments:
|
Value
- A ggplot object if
parameters
andcovariates
have only one element - A TableGrob object if multiple plots (output of grid.arrange)
See Also
Click here to see examples
# project <- file.path(getDemoPath(), "/2.case_studies/project_Theo_extravasc_SD.pkx") loadProject(project) runCAEstimation() # choosing to display only a subset of possible covariates and CA parameters plotCAParametersVsCovariates(parameters = c("Cl","V"), covariates = c("WT","FORM")) # changing the settings to choose which elements to display plotCAParametersVsCovariates(settings = list(regressionLine=F, spline=T, boxplotData="spread", legend=T, grid=F, units=F, fontsize=8)) # changing the preferences (appearance of the elements) plotCAParametersVsCovariates(parameters = c("Cl","V"), covariates = c("WT","FORM"), settings=list(legend=T, spline=T, boxplotData="spread"), preferences = list(boxplot=list(fill="#FBFBFB", opacity=0.5, legend=""), boxplotOutlier=list(color="#D71313", size=1.5, shape=2), boxplotValues=list(color="#1642f2", radius=1.5, shape=17, opacity=0.3, legend="NCA parameter values"), obs=list(color="#1642f2", radius=2, shape=17, legend="NCA parameter values"), regressionLine=list(color="#202120", lineWidth=1, lineType="dashed", legend="Linear regression line"), spline=list(color="#97989c", lineWidth=1, lineType="solid", legend="Spline regression line"))) # split each plot into two subplot for FORM=ref and FORM=test, vertically (ncol=1) plotCAParametersVsCovariates(parameters = c("Cl","V"), covariates = c("WT","AGE"), settings=list(ncol=1), stratify = list(split=c("FORM"))) # define groups for AGE and HT, color by HT and filter by AGE plotCAParametersVsCovariates(settings=list(legend=T), parameters = c("Cl","V"), covariates = c("WT","FORM"), stratify = list(groups=list(list(name="AGE", definition=c(30, 35)), list(name="HT", definition=c(184.5))), color="HT", colors=c("#cdced1","#161617"), filter=list("AGE",c(1,3)))) # filter to keep only second sequence (TR) and FORM=test plotCAParametersVsCovariates(settings=list(legend=T), parameters = c("Cl","V"), covariates = c("WT","FORM"), stratify = list(filter=list(list("SEQ",2),list("FORM","test"))))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Generate NCA data plots
Description
Plot the observed data as used for the NCA calculations.
Usage
plotNCAData(settings = list(), stratify = list(), preferences = list())
Arguments
settings |
List with the following settings:
|
|||||||
stratify |
List with the stratification arguments:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotNCAData") to check available options. |
Value
A ggplot object
See Also
Click here to see examples
# project <- paste0(getDemoPath(), "/2.case_studies/project_aPCSK9_SAD.pkx") loadProject(project) setNCASettings(blqMethodBeforeTmax="missing",blqMethodAfterTmax="LOQ") runNCAEstimation() # by default, individual profiles and mean curve are displayed plotNCAData() # displaying dots and mean curve by dose group, merged on a single plot plotNCAData(settings=list(lines=F, mean=T, meanMethod="geometric", ylog=T), stratify=list(split="DOSE_mg", mergedSplits=T), preferences=list(observationStatistics=list(lineWidth=0.8), obs=list(radius=2))) # coloring by ID, without mean curve plotNCAData(settings=list(mean=F,error=F), stratify = list(color=c("id"))) # changing the settings to display only the mean curve with SE, with bin limits and dosing times plotNCAData(settings=list(dots=F, lines=F, mean=T, error=T, meanMethod="geometric", errorMethod="standardError", useCensored=T, binLimits=T, binsSettings=list(criteria="leastsquare", is.fixedNbBins=T, nbBins=20), cens=F, dosingTimes=T, legend=T, grid=F, xlog=F,ylog=T, xlab="Time since first dose (days)", ylab="mAb concentration (ug/mL)", xlim=c(0,96), ylim=c(0.1,70), fontsize=12, units=F)) # changing preferences for observations, censored observations and bin limits plotNCAData(settings=list(dots=T, lines=T, legend=T, dosingTimes=T, mean=F, error=F, ylog=T, cens=T), preferences=list(obs=list(color="#161617", radius=2, shape=18, lineWidth=0.2, lineType="dashed", legend="Observations"), censObs=list(color="#cdced1", radius=2, shape=16, legend="Censored observations"), dosingTimes=list(color="#fcba03", lineWidth=0.5, lineType="solid", legend="Time of doses"))) # changing preferences for mean and bin limits plotNCAData(settings=list(dots=F, lines=F, legend=T, binLimits=T, grid=F), preferences=list(observationStatistics=list(color="#161617", whiskersWidth=3, lineWidth=0.7, lineType="solid", legend="mean and standard deviation over bins"), binsValues=list(color="#cdced1", lineWidth=0.5, lineType="dashed", legend="bins"))) # color and split by DOSE_mg but grouping two doses levels together plotNCAData(settings=list(mean=F,error=F,ylim=c(0,120)), stratify = list(groups=list(name="DOSE_mg",definition=list(c("150mg"), c("300mg","800mg"))), color="DOSE_mg", split="DOSE_mg")) #============= projects with several covariates project <- file.path(getDemoPath(), "/2.case_studies/project_Theo_extravasc_SD.pkx") loadProject(project) runNCAEstimation() # defining groups for AGE and HT, coloring by HT and filtering by AGE plotNCAData(settings=list(mean=F,error=F), stratify = list(groups=list(list(name="AGE", definition=c(24, 34)), list(name="HT", definition=c(184.5))), color="HT", colors=c("#cdced1","#161617"), filter=list("AGE",c(1,3)))) # filter to keep only second sequence (TR) and FORM=test plotNCAData(settings=list(mean=F,error=F), stratify = list(filter=list(list("SEQ",2),list("FORM","test")))) #============= project with sparse calculations project <- paste0(getDemoPath(), "/1.basic_examples/project_sparse.pkx") loadProject(project) runNCAEstimation() # mean profiles are already calculated for each stratification group used for the sparse calculations # stratify argument cannot be used plotNCAData() # displaying only the averaged profiles, without individual dots and without error bars plotNCAData(settings=list(dots=F, error=F))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Generate NCA individual fits (lambda_z regression)
Description
Plot the NCA individual fits (LambdaZ regression).
Usage
plotNCAIndividualFits(
settings = list(),
preferences = list(),
stratify = list()
)
Arguments
settings |
List with the following settings:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotNCAIndividualFits") to check available options. |
|||||||
stratify |
List with the stratification arguments. Stratification is not available in case "sparse data" calculations are used.
|
Value
A ggplot object
See Also
Click here to see examples
# project <- file.path(getDemoPath(), "/2.case_studies/project_Theo_extravasc_SD.pkx") loadProject(project) runNCAEstimation() # by default 12 individuals are displayed (with 2 occasions each in this example) plotNCAIndividualFits() # loop to create several plots ("pages") with 6 individuals (2 occasions each) per page, using "indices" and "isRange" nbIndiv <- 18 nbIndivPerPage <- 6 nbPages <- ceiling(nbIndiv/nbIndivPerPage) for(i in 1:nbPages){ plotNCAIndividualFits(stratify = list(individualSelection=list(indices=c(nbIndivPerPage*(i-1)+1,nbIndivPerPage*i), isRange=T))) } # selection of individuals based on id names plotNCAIndividualFits(stratify = list(individualSelection=list(ids=c("6","17")))) plotNCAIndividualFits(stratify = list(individualSelection=list(ids=c(6, 17)))) # plot only the observations (lambda_z=F) with dots, lines and dosing times. The two occasions are overlayed (splitOccasions=F) # all observations are displayed in the same way without distinguishing those use for lambda_z (obsUnusedColor="colored") # coloring by formulation with user-defined colors plotNCAIndividualFits(settings = list(lambda_z=F, obsDots=T, obsLines=T, dosingTimes=T, splitOccasions=F, ncol=3, obsUnusedColor="colored", legend=T, grid=F, ylog=T, units=F, ylab="Theophylline concentration (ug/mL)"), stratify = list(color=c("FORM"), colors=c("#00a4c6","#ff793f"))) # get available preferences getPlotPreferences("plotNCAIndividualFits") # change color, radius, shape, lineType, lineWidth and legend for all elements plotNCAIndividualFits(settings = list(legend=T), preferences = list(obs=list(color="#161617", radius=2, shape=18, legend="Points included in lambda_z"), censObs=list(color="#161617", radius=2, shape=5, legend="BLQ points"), obsUnused=list(color="#cdced1", radius=2, shape=18, legend="Points NOT included in lambda_z"), lambda_z=list(color="#1642f2", lineWidth=1, lineType="solid", legend="Lambda_z regression"))) #==== stratification (not available for sparse data) # define groups for AGE and color by AGE and FORM plotNCAIndividualFits(settings = list(obsDots=T,legend=T,obsUnusedColor="colored", obsLines=T), stratify = list(groups=list(name="AGE", definition=c(30, 35)), color=c("AGE","FORM"))) # filter to keep only individuals with sequence "RT" (first among "RT" and "TR") plotNCAIndividualFits(stratify = list(filter=list(list("SEQ","RT")))) plotNCAIndividualFits(stratify = list(filter=list(list("SEQ",1))))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Correlation between NCA individual parameters.
Description
Plot the correlation between NCA individual parameters.
Usage
plotNCAParametersCorrelation(
parametersRows = NULL,
parametersColumns = NULL,
settings = list(),
preferences = NULL,
stratify = list()
)
Arguments
parametersRows |
(vector<character>) vector with the names of NCA parameters to display on rows (by default the first 4 computed parameters are displayed). |
|||||||
parametersColumns |
(vector<character>) vector with the names of NCA parameters to display on columns (by default parametersColumns = parametersRows). |
|||||||
settings |
List with the following settings:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotNCAParametersCorrelation") to check available options. |
|||||||
stratify |
List with the stratification arguments:
|
Value
- A ggplot object if
parametersRows
andparametersColumns
have only one element - A TableGrob object if multiple plots (output of grid.arrange)
See Also
getChartsData getPlotPreferences
Click here to see examples
# project <- file.path(getDemoPath(), "/2.case_studies/project_Theo_extravasc_SD.pkx") loadProject(project) runNCAEstimation() # by default only the 4 first NCA parameters are shown plotNCAParametersCorrelation() # choosing to display only a subset of possible covariates and NCA parameters (same param on rows and columns) plotNCAParametersCorrelation(parametersRows = c("Cmax","Lambda_z","AUCINF_obs")) # selecting different parameters on rows and columns plotNCAParametersCorrelation(parametersRows = c("AUCINF_obs","Cmax"), parametersColumns = c("Lambda_z","Tmax")) # changing the settings to choose which elements to display plotNCAParametersCorrelation(settings = list(regressionLine=F, spline=T, legend=T, grid=F, units=F, fontsize=8)) # changing the preferences (appearance of the elements) plotNCAParametersCorrelation(parametersRows = c("Cmax","Lambda_z"), settings=list(legend=T, spline=T), preferences = list(obs=list(color="#202120", radius=2, shape=18, legend="NCA parameter values"), regressionLine=list(color="#202120", lineWidth=1, lineType="dashed", legend="Linear regression line"), spline=list(color="#97989c", lineWidth=1, lineType="solid", legend="Spline regression line"))) # split each plot into two subplot for FORM=ref and FORM=test, vertically (ncol=1) plotNCAParametersCorrelation(parametersRows = c("Cmax","Lambda_z","AUCINF_obs"), settings=list(ncol=1), stratify = list(split=c("FORM"))) # define groups for AGE and HT, color by HT and filter by AGE plotNCAParametersCorrelation(settings=list(legend=T), parametersRows = c("Cmax","Lambda_z"), stratify = list(groups=list(list(name="AGE", definition=c(30, 35)), list(name="HT", definition=c(184.5))), color="HT", colors=c("#cdced1","#161617"), filter=list("AGE",c(1,3)))) # filter to keep only second sequence (TR) and FORM=test plotNCAParametersCorrelation(settings=list(legend=T), parametersRows = c("Cmax","Lambda_z"), stratify = list(filter=list(list("SEQ",2),list("FORM","test"))))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Distribution of the individual NCA parameters
Description
Plot the distribution of the individual NCA parameters.
Usage
plotNCAParametersDistribution(
parameters = NULL,
settings = list(),
preferences = list(),
stratify = list()
)
Arguments
parameters |
(vector<character>) vector of NCA parameters to display. (by default the first 12 computed NCA parameters are displayed). |
|||||||
settings |
List with the following settings:
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotNCAParametersDistribution") to check available options. |
|||||||
stratify |
List with the stratification arguments:
|
Value
- A ggplot object if only one parameter is specified in
parameters
- A TableGrob object if multiple plots (output of grid.arrange)
See Also
getChartsData getPlotPreferences
Click here to see examples
# project <- file.path(getDemoPath(), "/2.case_studies/project_Theo_extravasc_SD.pkx") loadProject(project) runNCAEstimation() # plot a single parameter, as pdf or cdf plotNCAParametersDistribution(parameters = "AUCINF_obs", settings = list(plot = "pdf")) plotNCAParametersDistribution(parameters = "Lambda_z", settings = list(plot = "cdf")) # with a single parameter, a ggplot object if returned and additional ggplot elements can be added library(ggplot2) plotNCAParametersDistribution(parameters = "AUCINF_obs")+geom_vline(xintercept=140) # display only 4 parameters in a 2x2 matrix (ncol=2) plotNCAParametersDistribution(parameters = c('AUCINF_obs', 'AUClast', 'Cl_F_obs', 'Clast'), settings = list(ncol=2)) # changing the settings to choose which elements to display plotNCAParametersDistribution(parameters = c('AUCINF_obs', 'AUClast', 'Cl_F_obs', 'Clast'), settings = list(ncol=2, units=F, legend=T, grid=F, fontsize=9)) # changing the preferences (appearance of the elements) when using plot="cdf" plotNCAParametersDistribution(parameters = c('AUCINF_obs', 'AUClast', 'Cl_F_obs', 'Clast'), settings = list(ncol=2, legend=T, plot="cdf"), preferences = list(empirical=list(color="#161617", lineWidth=1, lineType="solid", legend="cumulative density distribution"))) # changing the preferences (appearance of the elements) when using plot="pdf" plotNCAParametersDistribution(parameters = c('AUCINF_obs', 'AUClast', 'Cl_F_obs', 'Clast'), settings = list(ncol=2, legend=T, plot="pdf"), preferences = list(histogramBar=list(fill="#cdced1", opacity=0.7, stroke="#161617", strokeWidth=1, legend="probability density distribution"))) # split each plot into two subplots for FORM=ref and FORM=test plotNCAParametersDistribution(parameters = c('AUCINF_obs', 'AUClast', 'Cl_F_obs', 'Clast'), settings = list(ncol=2), stratify = list(split=c("FORM"))) # define groups for AGE and HT, filter by AGE and split by HT plotNCAParametersDistribution(parameters = c('AUCINF_obs', 'AUClast', 'Cl_F_obs', 'Clast'), settings=list(ncol=2), stratify = list(groups=list(list(name="AGE", definition=c(30, 35)), list(name="HT", definition=c(184.5))), filter=list("AGE",c(1,3)), split="HT")) # filter to keep only second sequence (TR) and Period=1 plotNCAParametersDistribution(parameters = c('AUCINF_obs', 'AUClast', 'Cl_F_obs', 'Clast'), settings=list(ncol=2), stratify = list(filter=list(list("SEQ",2),list("Period","1"))))
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Individual NCA parameter vs covariate plot.
Description
Plot the NCA individual parameters vs covariates.
Usage
plotNCAParametersVsCovariates(
parameters = NULL,
covariates = NULL,
settings = list(),
preferences = NULL,
stratify = list()
)
Arguments
parameters |
(vector<character>) vector of nca parameters to display, e.g c("Cmax", "AUCINF_obs") (by default the first 4 computed nca parameters are displayed). |
|||||||
covariates |
(vector<character>) vector of covariates to display, e.g c("AGE", "FORM") (by default the first 4 covariates are displayed). |
|||||||
settings |
List with the following settings
|
|||||||
preferences |
(optional) preferences for plot display, run getPlotPreferences("plotNCAParametersVsCovariates") to check available options. |
|||||||
stratify |
List with the stratification arguments:
|
Value
- A ggplot object if
parameters
andcovariates
have only one element - A TableGrob object if multiple plots (output of grid.arrange)
See Also
getChartsData getPlotPreferences
Click here to see examples
# project <- file.path(getDemoPath(), "/2.case_studies/project_Theo_extravasc_SD.pkx") loadProject(project) runNCAEstimation() # choosing to display only a subset of possible covariates and NCA parameters plotNCAParametersVsCovariates(parameters = c("Cmax","Lambda_z"), covariates = c("WT","FORM")) # changing the settings to choose which elements to display plotNCAParametersVsCovariates(settings = list(regressionLine=F, spline=T, boxplotData="aligned", legend=T, grid=F, units=F, fontsize=8)) # changing the preferences (appearance of the elements) plotNCAParametersVsCovariates(parameters = c("Cmax","Lambda_z"), covariates = c("WT","FORM"), settings=list(legend=T, spline=T, boxplotData="spread"), preferences = list(boxplot=list(fill="#FBFBFB", opacity=0.5, legend=""), boxplotOutlier=list(color="#D71313", size=1.5, shape=2), boxplotValues=list(color="#1642f2", radius=1.5, shape=17, opacity=0.3, legend="NCA parameter values"), obs=list(color="#1642f2", radius=2, shape=17, legend="NCA parameter values"), regressionLine=list(color="#202120", lineWidth=1, lineType="dashed", legend="Linear regression line"), spline=list(color="#97989c", lineWidth=1, lineType="solid", legend="Spline regression line"))) # split each plot into two subplot for FORM=ref and FORM=test, vertically (ncol=1) plotNCAParametersVsCovariates(parameters = c("Cmax","Lambda_z","AUCINF_obs"), covariates = c("WT","AGE"), settings=list(ncol=1), stratify = list(split=c("FORM"))) # define groups for AGE and HT, color by HT and filter by AGE plotNCAParametersVsCovariates(settings=list(legend=T), parameters = c("Cmax","Lambda_z"), covariates = c("WT","FORM"), stratify = list(groups=list(list(name="AGE", definition=c(30, 35)), list(name="HT", definition=c(184.5))), color="HT", colors=c("#cdced1","#161617"), filter=list("AGE",c(1,3)))) # filter to keep only second sequence (TR) and FORM=test plotNCAParametersVsCovariates(settings=list(legend=T), parameters = c("Cmax","Lambda_z"), covariates = c("WT","FORM"), stratify = list(filter=list(list("SEQ",2),list("FORM","test"))))
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Define Preferences to customize plots
Description
Define the preferences to customize plots.
Usage
getPlotPreferences(plotName = NULL, update = NULL, ...)
Arguments
plotName |
(character) Name of the plot function. if plotName is NULL, all preferences are returned |
update |
list containing the plot elements to be updated. |
... |
additional arguments – dataType for some plots |
Details
This function creates a theme that customizes how a plot looks, i.e. legend, colors
fills, transparencies, linetypes an sizes, etc.
For each curve, list of available customizations:
- color: color (when lines or points)
- fill: color (when surfaces)
- opacity: color transparency
- radius: size of points
- shape: shape of points
- lineType: linetype
- lineWidth: line size
- legend: name of the legend (if NULL, no legend is displayed for the element)
Value
A list with theme specifiers
See Also
setPlotPreferences resetPlotPreferences
Click here to see examples
# preferences <- getPlotPreferences(update = list( obs = list(color = "red", legend = "Observations"), obsCens = list(color = rgb(70, 130, 180, maxColorValue = 255)) )) # preferences that are used by default in the plots preferences <- getPlotPreferences() # preferences that are used by default in plotObservedData preferences <- getPlotPreferences(plotName = "plotObservedData") ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Reset plot preferences to go back to default preferences
Description
Reset plot preferences to go back to default preferences.
Usage
resetPlotPreferences()
See Also
getPlotPreferences setPlotPreferences
Click here to see examples
# getPlotPreferences()$obs[c("color", "legend")] update = list(obs = list(color = "green", legend = "Observation")) setPlotPreferences(update = update) getPlotPreferences()$obs[c("color", "legend")] resetPlotPreferences() getPlotPreferences()$obs[c("color", "legend")] ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Set preferences to customize plots
Description
Set preferences to customize plots.
When preferences are set, the updated preferences will used in all the plots.
Usage
setPlotPreferences(update = NULL)
Arguments
update |
list containing the plot elements to be updated. |
Details
This function creates a theme that customizes how a plot looks, i.e. legend, colors
fills, transparencies, linetypes an sizes, etc.
For each curve, list of available customizations:
- color: color (when lines or points)
- fill: color (when surfaces)
- opacity: color transparency
- radius: size of points
- shape: shape of points
- lineType: linetype
- lineWidth: line size
- legend: name of the legend (if NULL, no legend is displayed for the element)
See Also
getPlotPreferences resetPlotPreferences
Click here to see examples
# getPlotPreferences()$obs[c("color", "legend")] update = list(obs = list(color = "green", legend = "Observation")) setPlotPreferences(update = update) getPlotPreferences()$obs[c("color", "legend")] ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Export current project to Monolix, PKanalix or Simulx
Description
Export the current project to another application of the MonolixSuite, and load the exported project.
NOTE: This action switches the current session to the target software. Current unsaved modifications will be lost.
The extensions are .mlxtran for Monolix, .pkx for PKanalix, .smlx for Simulx and .dxp for Datxplore.
WARNING: R is sensitive between ‘\’ and ‘/’, only ‘/’ can be used.
Usage
exportProject(settings, force = F)
Arguments
settings |
(character) Export settings:
|
force |
(logical) [optional] Should software switch security be overpassed or not. Equals FALSE by default. |
Details
At export, a new project is created in a temporary folder. By default, the file is created with a project setting filesNextToProject = TRUE, which means that file dependencies such as data and model files are copied and kept next to the new project (or in the result folder for Simulx). This new project can be saved to the desired location withsaveProject.
Exporting a Monolix or a PKanalix project to Simulx automatically creates elements that can be used for simulation, exactly as in the GUI.
To see which elements of some type have been created in the new project, you can use the get..Element functions: getOccasionElements, getPopulationElements,
.getPopulationElements
, getIndividualElements, getCovariateElements, getTreatmentElements, getOutputElements, getRegressorElements
See Also
newProject, loadProject, importProject
Click here to see examples
# [PKanalix only] exportProject(settings = list(targetSoftware = "monolix", filesNextToProject = F)) exportProject(settings = list(targetSoftware = "monolix", filesNextToProject = F, exportedUnusedCovariates = list(all = FALSE, name = c("sex", "weight")))) [Monolix only] exportProject(settings = list(targetSoftware = "simulx", filesNextToProject = T, dataFilePath = "data.txt", dataFileType = "vpc")) exportProject(settings = list(targetSoftware = "simulx", filesNextToProject = F, dataFilePath = "/path/to/data/data.txt")) [Simulx only] exportProject(settings = list(targetSoftware = "pkanalix", dataFilePath = "data.txt", modelFileName = "model.txt")) exportProject(settings = list(targetSoftware = "pkanalix", dataFilePath = "/path/to/data/data.txt")) ## End(Not run) # Working example to export a Monolix project to Simulx. The resulting .smlx file can be opened from Simulx GUI. initializeLixoftConnectors(software = "monolix", force = TRUE) loadProject(file.path(getDemoPath(),"1.creating_and_using_models","1.1.libraries_of_models","warfarinPK_project.mlxtran")) runScenario() exportProject(settings = list(targetSoftware = "simulx"), force = TRUE) saveProject("importFromMonolix.smlx")
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Get project data
Description
Get a description of the data used in the current project. Available informations are:
- dataFile (character): Path to the data file (csv, xlsx, xlsx, sas7bdat, xpt or txt). Can be absolute or relative to the current working directory.
- header (vector<character>): vector of header names
- headerTypes (vector<character>): vector of header types
- observationNames (vector<character>): vector of observation names
- observationTypes (vector<character>): vector of observation types
- nbSSDoses (integer): number of doses (if there is a SS column)
- regressorsSettings (character): regressors interpolation method (either last carried forward or linear)
- sheet (character): Name of the sheet in xlsx/xls file. If not provided, the first sheet is used.
Usage
getData()
Value
A list describing project data.
See Also
Click here to see examples
# data = getData() data -> $dataFile "/path/to/data/file.txt" $header c("ID","TIME","CONC","SEX","OCC") $headerTypes c("ID","TIME","OBSERVATION","CATEGORICAL COVARIATE","IGNORE") $observationNames c("concentration") $observationTypes c(concentration = "continuous") $sheet "sheet1" ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Get interpreted project data
Description
Get data after interpretation done by the software, as it is displayed in the Data tab in the interface.
Interpretation of data includes, but is not limited to, data formatting, filters, addition of doses through the ADDL column and steady state settings, addition of additional covariates, interpolation of regressors.
It returns as dataframe with all columns of type "character".
Usage
getInterpretedData()
[Monolix – PKanalix – Simulx] Get a library model’s content.
Description
Get the content of a library model.
Usage
getLibraryModelContent(filename, print = TRUE)
Arguments
filename |
(character) The filename of the requested model. Can start with "lib:", end with ".txt", but neither are mandatory. |
print |
(logical) If TRUE (default), model’s content is printed with human-readable line breaks (alongside regular output with "\n"). |
Value
The model’s content as a single string.
Click here to see examples
# getLibraryModelContent("oral1_1cpt_kaVCl") model <- getLibraryModelContent(filename = "lib:oral1_1cpt_kaVCl.txt", print = FALSE) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Get the name of a library model given a list of library filters.
Description
Get the name of a library model given a list of library filters.
Usage
getLibraryModelName(library, filters = list())
Arguments
library |
(character) One of the MonolixSuite library of models. Possible values are "pk", "pd", "pkpd", "pkdoubleabs", "pm", "tmdd", "tte", "count" and "tgi". |
filters |
(list(name = character)) Named list of filters (optional), format: list(filterKey = "filterValue", …). Default empty list. Since available filters are not in any particular order, filterKey should always be stated. |
Details
Models can be loaded from a library based on a selection of filters as in PKanalix, Monolix and Simulx GUI. For a complete description of each model library, and guidelines on how to select models, please visit https://mlxtran.lixoft.com/model-libraries/.
getLibraryModelName enables to get the name of the model to be loaded. You can then use it in setStructuralModel or newProject to load the model in an existing or in a new project.
All possible keys and values for each of the libraries are listed below.
PK library
key | values | |
administration | bolus, infusion, oral, oralBolus | |
delay | noDelay, lagTime, transitCompartments | |
absorption | zeroOrder, firstOrder | |
distribution | 1compartment, 2compartments, 3compartments | |
elimination | linear, MichaelisMenten | |
parametrization | rate, clearance, hybridConstants | |
bioavailability | true, false | |
PD library
key | values | |
response | immediate, turnover | |
drugAction | linear, logarithmic, quadratic, Emax, Imax, productionInhibition, | |
degradationInhibition, degradationStimulation, productionStimulation | ||
baseline | const, 1-exp, exp, linear, null | |
inhibition | partialInhibition, fullInhibition | |
sigmoidicity | true, false | |
PKPD library
key | values | |
administration | bolus, infusion, oral, oralBolus | |
delay | noDelay, lagTime, transitCompartments | |
absorption | zeroOrder, firstOrder | |
distribution | 1compartment, 2compartments, 3compartments | |
elimination | linear, MichaelisMenten | |
parametrization | rate, clearance | |
bioavailability | true, false | |
response | direct, effectCompartment, turnover | |
drugAction | Emax, Imax, productionInhibition, degradationInhibition, | |
degradationStimulation, productionStimulation | ||
baseline | const, null | |
inhibition | partialInhibition, fullInhibition | |
sigmoidicity | true, false | |
PK double absorption library
key | values | |
firstAbsorption | zeroOrder, firstOrder | |
firstDelay | noDelay, lagTime, transitCompartments | |
secondAbsorption | zeroOrder, firstOrder | |
secondDelay | noDelay, lagTime, transitCompartments | |
absorptionOrder | simultaneous, sequential | |
forceLongerDelay | true, false | |
distribution | 1compartment, 2compartments, 3compartments | |
elimination | linear, MichaelisMenten | |
parametrization | rate, clearance | |
Parent-metabolite library
key | values | |
administration | bolus, infusion, oral, oralBolus | |
firstPassEffect | noFirstPassEffect, withDoseApportionment, | |
withoutDoseApportionment | ||
delay | noDelay, lagTime, transitCompartments | |
absorption | zeroOrder, firstOrder | |
transformation | unidirectional, bidirectional | |
parametrization | rate, clearance | |
parentDistribution | 1compartment, 2compartments, 3compartments | |
parentElimination | linear, MichaelisMenten | |
metaboliteDistribution | 1compartment, 2compartments, 3compartments | |
metaboliteElimination | linear, MichaelisMenten | |
TMDD library
key | values | |
administration | bolus, infusion, oral, oralBolus | |
delay | noDelay, lagTime, transitCompartments | |
absorption | zeroOrder, firstOrder | |
distribution | 1compartment, 2compartments, 3compartments | |
tmddApproximation | MichaelisMenten, QE, QSS, full, Wagner, | |
constantRtot, constantRtotIB, irreversibleBinding | ||
output | totalLigandLtot, freeLigandL | |
parametrization | rate, clearance | |
TTE library
key | values | |
tteModel | exponential, Weibull, Gompertz, loglogistic, | |
uniform, gamma, generalizedGamma | ||
delay | true, false | |
numberOfEvents | singleEvent, repeatedEvents | |
typeOfEvent | intervalCensored, exact | |
dummyParameter | true, false | |
Count library
key | values | |
countDistribution | Poisson, binomial, negativeBinomial, betaBinomial, | |
generalizedPoisson, geometric, hypergeometric, | ||
logarithmic, Bernoulli | ||
zeroInflation | true, false | |
timeEvolution | constant, linear, exponential, Emax, Hill | |
parametrization | probabilityOfSuccess, averageNumberOfCounts | |
TGI library
key | values | |
shortcut | ClaretExponential, Simeoni, Stein, Wang, | |
Bonate, Ribba, twoPopulation | ||
initialTumorSize | asParameter, asRegressor | |
kinetics | true, false | |
model | linear, quadratic, exponential, generalizedExponential, | |
exponentialLinear, Simeoni, Koch, logistic, | ||
generalizedLogistic, SimeoniLogisticHybrid, Gompertz, | ||
exponentialGompertz, vonBertalanffy, generalizedVonBertalanffy | ||
additionalFeature | none, angiogenesis, immuneDynamics | |
treatment | none, pkModel, exposureAsRegressor, startAtZero, | |
startTimeAsRegressor, armAsRegressor | ||
killingHypothesis | logKill, NortonSimon | |
dynamics | firstOrder, MichaelisMenten, MichaelisMentenHill, | |
exponentialKill, constant | ||
resistance | ClaretExponential, resistantCells, none | |
delay | signalDistribution, cellDistribution, none | |
additionalTreatmentEffect | none, angiogenesisInhibition, immuneEffectorDecay | |
Value
Name of the filtered model, or vector of names of the available models if not all filters were selected. Names start with "lib:".
Click here to see examples
# getLibraryModelName(library = "pk", filters = list(administration = "oral", delay = "lagTime", absorption = "firstOrder", distribution = "1compartment", elimination = "linear", parametrization = "clearance")) # returns "lib:oral1_1cpt_TlagkaVCl.txt" getLibraryModelName("pd", list(response = "turnover", drugAction = "productionStimulation")) # returns c("lib:turn_input_Emax.txt", "lib:turn_input_gammaEmax.txt") ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Get mapping
Description
Get mapping between data and model.
Usage
getMapping()
Value
A list of mapping information:
- mapping (list<list>) A list of lists representing a link between data and model. Each list contains:
- obsId (character) Name of observation id present in the dataset. It corresponds to the content of column tagged as "obsid" in case of several obs ids, or to the header of the column tagged as "observation" otherwise
- modelOutput (character) Name of the model prediction listed in the output= line of the structural model
- observationName [Monolix] (character) Model observation name (for continuous observations only)
- type (character) Type of linked data ("continuous" | "discrete" | "event")
- freeData (list<list>) A list of lists describing not mapped data:
- obsId (character) Name of observation id present in the dataset
- type (character) Data type
- freePredictions (list<list>) A list of lists describing not mapped predictions:
- modelOutput (character) Name of the model prediction listed in the output= line of the structural model
- type (character) Prediction type
See Also
Click here to see examples
# f = getMapping() f$mapping -> list( list(obsId = "1", modelOutput = "Cc", observationName = "concentration", type = "continuous"), list(obsId = "2", modelOutput = "Level", type = "discrete") ) f$freeData -> list( list(obsId = "3", type = "event") ) f$freePredictions -> list( list(modelOutput = "Effect", type = "continuous") ) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Get structural model file
Description
Get the model file for the structural model used in the current project.
Usage
getStructuralModel()
Details
For Simulx, this function will return the path to the structural model only if the project was imported from Monolix, and the path to the full custom model otherwise.
Note that a custom model in Simulx may include also a statistical part.
For Simulx, there is no associated function getStructuralModel() because setting a new model is equivalent to creating a new project. Use newProject instead.
If a model was loaded from the libraries, the returned character is not a path,
but the name of the library model, such as "lib:model_name.txt". To see the content of a library model, use getLibraryModelContent.
Value
The path to the structural model file.
See Also
For Monolix and PKanalix only: setStructuralModel
Click here to see examples
# getStructuralModel() => "/path/to/model/inclusion/modelFile.txt" ## End(Not run) # Get the name and see the content of the model used in warfarin demo project initializeLixoftConnectors("monolix", force = TRUE) loadProject(file.path(getDemoPath(), "1.creating_and_using_models", "1.1.libraries_of_models", "warfarinPK_project.mlxtran")) libModelName <- getStructuralModel() getLibraryModelContent(libModelName) # Get the name of the model file used in Simulx initializeLixoftConnectors("simulx", force = TRUE) project_name <- file.path(getDemoPath(), "1.overview", "newProject_TMDDmodel.smlx") loadProject(project_name) getStructuralModel() # Get the name of the model file imported to Simulx initializeLixoftConnectors("monolix", force = TRUE) project_name <- file.path(getDemoPath(), "1.creating_and_using_models", "1.1.libraries_of_models", "warfarinPK_project.mlxtran") loadProject(project_name) getStructuralModel() initializeLixoftConnectors("simulx", force = TRUE) importProject(project_name) getStructuralModel()
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Import project from Datxplore, Monolix or PKanalix
Description
Import a Monolix or a PKanalix project into the currently running application initialized in the connectors.
The extensions are .mlxtran for Monolix, .pkx for PKanalix, .smlx for Simulx and .dxp for Datxplore.
WARNING: R is sensitive between ‘\’ and ‘/’, only ‘/’ can be used.
Allowed import sources are:
CURRENT SOFTWARE | ALLOWED IMPORTS |
Monolix | PKanalix |
PKanalix | Monolix, Datxplore |
Simulx | Monolix, PKanalix. |
Usage
importProject(projectFile)
Arguments
projectFile |
(character) Path to the project file. Can be absolute or relative to the current working directory. |
Details
At import, a new project is created in a temporary folder with a project setting filesNextToProject = TRUE,
which means that file dependencies such as data and model files are copied and kept next to the new project
(or in the result folder for Simulx). This new project can be saved to the desired location withsaveProject.
Simulx projects can only be exported, not imported. To export a Simulx project to another application,
please load the Simulx project with the Simulx connectors and use exportProject.
Importing a Monolix or a PKanalix project into Simulx automatically creates elements that can be used for
simulation, exactly as in the GUI.
To see which elements of some type have been created in the new project, you can use the get..Element functions:
getOccasionElements, getPopulationElements,
,getPopulationElements
, getIndividualElements
getCovariateElements, getTreatmentElements, getOutputElements, getRegressorElements
.
See Also
Click here to see examples
# initializeLixoftConnectors(software = "simulx", force = TRUE) importProject("/path/to/project/file.mlxtran") importProject("/path/to/project/file.pkx") initializeLixoftConnectors(software = "monolix", force = TRUE) importProject("/path/to/project/file.pkx") initializeLixoftConnectors(software = "pkanalix", force = TRUE) importProject("/path/to/project/file.mlxtran") ## End(Not run) # working example to import a Monolix demo project into Simulx. The resulting .smlx file can be opened from Simulx GUI. initializeLixoftConnectors(software = "monolix", force = TRUE) MonolixDemoPath = file.path(getDemoPath(),"1.creating_and_using_models","1.1.libraries_of_models","warfarinPK_project.mlxtran") initializeLixoftConnectors(software = "simulx", force = TRUE) importProject(MonolixDemoPath) saveProject("importFromMonolix.smlx")
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Get current project load status.
Description
Get a logical saying if a project is currently loaded.
Usage
isProjectLoaded()
Value
TRUE if a project is currently loaded, FALSE otherwise
Click here to see examples
# project_name <- file.path(getDemoPath(), "1.creating_and_using_models", "1.1.libraries_of_models", "warfarinPK_project.mlxtran") loadProject(project_name) isProjectLoaded() initializeLixoftConnectors("pkanalix") isProjectLoaded()
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Load project from file
Description
Load a project in the currently running application initialized in the connectors.
The extensions are .mlxtran for Monolix, .pkx for PKanalix, and .smlx for Simulx.
WARNING: R is sensitive between ‘\’ and ‘/’, only ‘/’ can be used.
Usage
loadProject(projectFile)
Arguments
projectFile |
(character) Path to the project file. Can be absolute or relative to the current working directory. |
See Also
saveProject, importProject, exportProject, newProject
Click here to see examples
# loadProject("/path/to/project/file.mlxtran") for Linux platform loadProject("C:/Users/path/to/project/file.mlxtran") for Windows platform ## End(Not run) # Load a Monolix project initializeLixoftConnectors("monolix") project_name <- file.path(getDemoPath(), "8.case_studies", "hiv_project.mlxtran") loadProject(project_name) # Load a PKanalix project initializeLixoftConnectors("pkanalix") project_name <- file.path(getDemoPath(), "1.basic_examples", "project_censoring.pkx") loadProject(project_name) # Load a Simulx project initializeLixoftConnectors("simulx") project_name <- file.path(getDemoPath(), "2.models", "longitudinal.smlx") loadProject(project_name)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Create a new project
Description
Create a new project. New projects can be created in the connectors as in PKanalix, Monolix or Simulx GUI. The creation of a new project requires a dataset in PKanalix, a dataset and a model in Monolix, and a model in Simulx.
Usage
newProject(modelFile = NULL, data = NULL, mapping = NULL)
Arguments
modelFile |
(character) Path to the model file. Mandatory for Monolix and Simulx, optional for PKanalix (used only for the CA part). Can be absolute or relative to the current working directory. To use a model from the libraries, you can find the model name with getLibraryModelName and set modelFile = "lib:modelName.txt" with the name obtained. To simulate inter-individual variability in Simulx with a new project, the model file has to include the statistical model, contrary to Monolix and PKanalix for which the model file only contains the structural model. Check here in detail how to write such a model from scratch. |
data |
(list) Structure describing the data. Mandatory for Monolix and PKanalix.
|
mapping |
[optional](list): A list of lists representing a link between observation types and model outputs. Each list contains:
|
Details
Note: instead of creating a project from scratch, it is also possible in Monolix and PKanalix to load an existing project with loadProject or importProject and change the dataset or the model with setData or setStructuralModel
.
See Also
Click here to see examples
# initializeLixoftConnectors("monolix") data_file <- file.path(getDemoPath(), "1.creating_and_using_models", "1.1.libraries_of_models", "data", "warfarin_data.csv") newProject(data = list(dataFile = data_file, headerTypes = c("id", "time", "amount", "observation", "obsid", "contcov", "catcov", "contcov")), modelFile = "lib:oral1_1cpt_IndirectModelInhibitionKin_TlagkaVClR0koutImaxIC50.txt", mapping = list(list(obsId = "1", modelOutput = "Cc", observationName = "y1"), list(obsId = "2", modelOutput = "R", observationName = "y2"))) # Create a new PKanalix project initializeLixoftConnectors("pkanalix") data_file <- file.path(getDemoPath(), "1.basic_examples", "data", "data_BLQ.csv") newProject(data = list(dataFile = data_file, headerTypes = c("id", "time", "amount", "observation", "cens", "catcov"))) # Create a new Simulx project initializeLixoftConnectors("simulx") newProject(modelFile = "lib:oral1_1cpt_IndirectModelInhibitionKin_TlagkaVClR0koutImaxIC50.txt")
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Save current project
Description
Save the current project as a file that can be reloaded in the connectors or in the GUI.
Usage
saveProject(projectFile = "")
Arguments
projectFile |
[optional](character) Path where to save a copy of the current mlxtran model. Can be absolute or relative to the current working directory. If no path is given, the file used to build the current configuration is updated. |
Details
The extensions are .mlxtran for Monolix, .pkx for PKanalix, and .smlx for Simulx.
WARNING: R is sensitive between ‘\’ and ‘/’, only ‘/’ can be used.
If the project setting "userfilesnexttoproject" is set to TRUE with setProjectSettings, all file dependencies such as model, data or external files are saved next to the project for Monolix and PKanalix, and in the result folder for Simulx.
See Also
Click here to see examples
# [PKanalix only] saveProject("/path/to/project/file.pkx") # save a copy of the model [Monolix only] saveProject("/path/to/project/file.mlxtran") # save a copy of the model [Simulx only] saveProject("/path/to/project/file.smlx") # save a copy of the model [Monolix - PKanalix - Simulx] saveProject() # update current model ## End(Not run) # Load, change and save a PKanalix project under a new name initializeLixoftConnectors("pkanalix") project_name <- file.path(getDemoPath(), "1.basic_examples", "project_censoring.pkx") loadProject(project_name) setNCASettings(blqMethodAfterTmax = "missing") saveProject("~/changed_project.pkx") # Load, change and save a Monolix project under a new name initializeLixoftConnectors("monolix") project_name <- file.path(getDemoPath(), "1.creating_and_using_models", "1.1.libraries_of_models", "warfarinPK_project.mlxtran") loadProject(project_name) addContinuousTransformedCovariate(tWt = "3*exp(wt)") saveProject("~/changed_project.mlxtran") # Load, change and save a Simulx project under a new name initializeLixoftConnectors("simulx") project_name <- file.path(getDemoPath(), "2.models", "longitudinal.smlx") loadProject(project_name) defineTreatmentElement(name = "trt", element = list(data = data.frame(time = 0, amount = 100))) saveProject("~/changed_project.smlx")
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Set project data
Description
Set project data giving a data file and specifying headers and observations types.
Usage
setData(
dataFile,
headerTypes,
observationTypes = NULL,
nbSSDoses = NULL,
regressorsSettings = NULL,
sheet = NULL
)
Arguments
dataFile |
(character): Path to the data file (csv, xlsx, xlsx, sas7bdat, xpt or txt). Can be absolute or relative to the current working directory. |
headerTypes |
(vector<character>): A vector of header types. The possible header types are: "ignore", "id", "time", "observation", "amount", "contcov", "catcov", "occ", "evid", "mdv", "obsid", "cens", "limit", "regressor", "nominaltime", "admid", "rate", "tinf", "ss", "ii", "addl", "date". Notice that these are not the types displayed in the interface, these one are shortcuts. |
observationTypes |
[optional] (list): A list giving the type of each observation present in the data file. If there is only one y-type, the corresponding observation name can be omitted. The possible observation types are "continuous", "discrete", and "event". |
nbSSDoses |
[optional](integer): Number of doses (if there is a SS column). |
regressorsSettings |
[optional](character): Regressors interpolation method. Either ‘lastCarriedForward’ (default) or ‘linearInterpolation’. |
sheet |
[optional] (character): Name of the sheet in xlsx/xls file. If not provided, the first sheet is used. |
See Also
Click here to see examples
# setData(dataFile = "/path/to/data/file.txt", headerTypes = c("IGNORE", "OBSERVATION"), observationTypes = "continuous") setData(dataFile = "/path/to/data/file.txt", headerTypes = c("IGNORE", "OBSERVATION", "YTYPE"), observationTypes = list(Concentration = "continuous", Level = "discrete")) setData(dataFile = "/path/to/data/file.xlsx", sheet = "sheet2", headerTypes = c("IGNORE", "OBSERVATION", "YTYPE"), observationTypes = list(Concentration = "continuous", Level = "discrete")) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Set mapping
Description
Set mapping between data and model.
Usage
setMapping(mapping)
Arguments
mapping |
(list<list>) A list of lists representing a link between the data and the model. Each list contains:
|
See Also
Click here to see examples
# [Monolix] setMapping(list(list(obsId = "1", modelOutput = "Cc", observationName = "concentration"), list(obsId = "2", modelOutput = "Level"))) [PKanalix] setMapping(list(list(obsId = "1", modelOutput = "Cc"), list(obsId = "2", modelOutput = "Level"))) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Set structural model file
Description
Set the structural model.
Usage
setStructuralModel(modelFile)
Arguments
modelFile |
(character) Path to the model file. Can be absolute or relative to the current working directory. |
Details
To use a model from the libraries, you can find the model name with getLibraryModelName
and set modelFile = "lib:modelName.txt" with the name obtained.
See Also
Click here to see examples
# setStructuralModel("/path/to/model/file.txt") setStructuralModel("'lib:oral1_2cpt_kaClV1QV2.txt'") # working example to set a model from the library: initializeLixoftConnectors("monolix",force = TRUE) loadProject(file.path(getDemoPath(),"1.creating_and_using_models","1.1.libraries_of_models","warfarinPK_project.mlxtran")) #check model currently loaded: getStructuralModel() #get the name for a model from the library with 2 compartments: LibModel2cpt = getLibraryModelName(library = "pk", filters = list(administration = "oral", delay = "lagTime", absorption = "firstOrder", distribution = "2compartments", elimination = "linear", parametrization = "clearance")) #check model content: getLibraryModelContent(LibModel2cpt) #set this new model in the project: setStructuralModel(LibModel2cpt) # check that the project has now the new model instead of the previous one: getStructuralModel() ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Share project.
Description
Create a zip archive file from current project and its results.
Usage
shareProject(archiveFile)
Arguments
archiveFile |
(character) Path to the .zip archive file to create. |
Click here to see examples
# shareProject("/path/to/archive.zip") ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Get console mode
Description
Get console mode, ie volume of output after running estimation tasks. Possible verbosity levels are:
“none” | no output |
“basic” | at the end of each algorithm, associated results are displayed |
“complete” | each algorithm iteration and/or status is displayed |
Usage
getConsoleMode()
Value
A string corresponding to current console mode
See Also
[Monolix – PKanalix – Simulx] Get project preferences
Description
Get a summary of the project preferences. Preferences are:
“relativepath” | (logical) | Use relative path for save/load operations. |
“threads” | (integer > 0) | Number of threads. |
“temporarydirectory” | (character) | Path to the directory used to save temporary files. |
“usebinarydataset” | (logical) | Save dataset as binary file to speed project reload up. |
“timestamping” | (logical) | Create an archive containing result files after each run. |
“delimiter” | (character) | Character use as delimiter in exported result files. |
“reportingrenamings” | (list("label" = "alias">)) | For each label, an alias to be use at report generation (using generateReport). |
“exportchartsdata” | (logical) | Should charts data be exported. |
“savebinarychartsdata” | (logical) | [Monolix] Save charts simulations as binray file to speed charts creation up. |
“exportchartsdatasets” | (logical) | [Monolix] Should charts datasets be exported if possible. |
“exportvpcsimulations” | (logical) | [Monolix] Should vpc simulations be exported if possible. |
“exportsimulationfiles” | (logical) | [Simulx] Should simulation results files be exported. |
“headeraliases” | (list("header" = vector<character>)) | For each header, the list of the recognized aliases. |
“ncaparameters” | (vector<character>) | [PKanalix] Defaulty computed NCA parameters. |
“units” | (list("type" = character) | [PKanalix] Time, amount and/or volume units. |
Usage
getPreferences(...)
Arguments
... |
[optional] (character) Name of the preference whose value should be displayed. If no argument is provided, all the preferences are returned. |
Value
A list with each preference name mapped to its current value.
Click here to see examples
# getPreferences() # retrieve a list of all the general settings getPreferences("imageFormat","exportCharts") # retrieve only the imageFormat and exportCharts settings values ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Get project settings
Description
Get a summary of the project settings.
Associated settings for Monolix projects are:
“directory” | (character) | Path to the folder where simulation results will be saved. It should be a writable directory. |
“exportResults” | (logical) | Should results be exported. |
“seed” | (0 < integer < 2147483647) | Seed used by random generators. |
“grid” | (integer) | Number of points for the continuous simulation grid. |
“nbSimulations” | (integer) | Number of simulations. |
“dataandmodelnexttoproject” | (logical) | Should data and model files be saved next to project. |
“project” | (character) | Path to the Monolix project. |
Associated settings for PKanalix projects are:
“directory” | (character) | Path to the folder where simulation results will be saved. It should be a writable directory. |
“seed” | (0 < integer < 2147483647) | Seed used by random generators. |
“datanexttoproject” | (logical) | Should data and model (in case of CA) files be saved next to project. |
Associated settings for Simulx projects are:
“directory” | (character) | Path to the folder where simulation results will be saved. It should be a writable directory. |
“seed” | (0 < integer < 2147483647) | Seed used by random generators. |
“userfilesnexttoproject” | (logical) | Should user files be saved next to project. |
Usage
getProjectSettings(...)
Arguments
... |
[optional] (character) Name of the settings whose value should be displayed. If no argument is provided, all the settings are returned. |
Value
A list with each setting name mapped to its current value.
See Also
Click here to see examples
# getProjectSettings() # retrieve a list of all the project settings ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Set console mode
Description
Set console mode, ie volume of output after running estimation tasks. Possible verbosity levels are:
“none” | no output |
“basic” | for each algorithm, display current iteration then associated results at algorithm end |
“complete” | display all iterations then associated results at algorithm end |
Usage
setConsoleMode(mode)
Arguments
mode |
(character) Accepted values are: "none" [default], "basic", "complete" |
See Also
[Monolix – PKanalix – Simulx] Set preferences
Description
Set the value of one or several of the project preferences. Prefenreces are:
“relativepath” | (logical) | Use relative path for save/load operations. |
“threads” | (integer > 0) | Number of threads. |
“temporarydirectory” | (character) | Path to the directory used to save temporary files. |
“usebinarydataset” | (logical) | Save dataset as binary file to speed project reload up. |
“timestamping” | (logical) | Create an archive containing result files after each run. |
“delimiter” | (character) | Character use as delimiter in exported result files. |
“reportingrenamings” | (list("label" = "alias")) | For each label, an alias to be use at report generation (using generateReport). |
“exportchartsdata” | (logical) | Should charts data be exported. |
“savebinarychartsdata” | (logical) | [Monolix] Save charts simulations as binray file to speed charts creation up. |
“exportchartsdatasets” | (logical) | [Monolix] Should charts datasets be exported if possible. |
“exportvpcsimulations” | (logical) | [Monolix] Should vpc simulations be exported if possible. |
“exportsimulationfiles” | (logical) | [Simulx] Should simulation results files be exported. |
“headeraliases” | (list("header" = vector<character>)) | For each header, the list of the recognized aliases. |
“ncaparameters” | (vector<character>) | [PKanalix] Defaulty computed NCA parameters. |
“units” | (list("type" = character) | [PKanalix] Time, amount and/or volume units. |
Usage
setPreferences(...)
Arguments
... |
A collection of comma-separated pairs {preferenceName = settingValue}. |
See Also
Click here to see examples
# setPreferences(exportCharts = FALSE, delimiter = ",") ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Set project settings
Description
Set the value of one or several of the settings of the project.
Associated settings for Monolix projects are:
“directory” | (character) | Path to the folder where simulation results will be saved. It should be a writable directory. |
“exportResults” | (logical) | Should results be exported. |
“seed” | (0 < integer < 2147483647) | Seed used by random generators. |
“grid” | (integer) | Number of points for the continuous simulation grid. |
“nbSimulations” | (integer) | Number of simulations. |
“dataandmodelnexttoproject” | (logical) | Should data and model files be saved next to project. |
Associated settings for PKanalix projects are:
“directory” | (character) | Path to the folder where simulation results will be saved. It should be a writable directory. |
“dataNextToProject” | (logical) | Should data and model (in case of CA) files be saved next to project. |
“seed” | (0 < integer < 2147483647) | Seed used by random generators. |
Associated settings for Simulx projects are:
“directory” | (character) | Path to the folder where simulation results will be saved. It should be a writable directory. |
“seed” | (0 < integer < 2147483647) | Seed used by random generators. |
“userfilesnexttoproject” | (logical) | Should user files be saved next to project. |
Usage
setProjectSettings(...)
Arguments
... |
A collection of comma-separated pairs {settingName = settingValue}. |
See Also
Click here to see examples
# setProjectSettings(directory = "/path/to/export/directory", seed = 12345) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Generate report
Description
Generate a project report with default options or from a custom Word template.
Usage
generateReport(
templateFile = NULL,
tablesStyle = NULL,
watermark = NULL,
reportFile = NULL
)
Arguments
templateFile |
[optional] (character) Path to the .docx template file used as reporting base. If not provided, a default report file is generated (as default option in the GUI). |
tablesStyle |
[optional] (character) |
watermark |
[optional] (list)
|
reportFile |
[optional] (list) If not provided, the report will be saved next to the project file with the name <projectname>_report.docx.
|
Details
Reports can be generated as in the GUI, either by using the default reporting or by using a custom template. Placeholders for tables can be used in the template, and they are replaced by result tables. It is not possible to replace plots placeholders with the connector, because this requires an interface to be open. If plots placeholders are present in the template, they will be replaced by nothing in the generated report.
Click here to see examples
# generateReport() generateReport(templateFile = "/path/to/template.docx") generateReport(templateFile = "/path/to/template.docx", tablesStyle = "Plain Table 1", watermark = list(text = "watermark", fontSize = 15)) ## End(Not run) # Working example to generate a default report ### initializeLixoftConnectors("monolix") loadProject(file.path(getDemoPath(),"1.creating_and_using_models","1.1.libraries_of_models","warfarinPK_project.mlxtran")) runScenario() reportPath = tempfile("report", fileext = ".docx") generateReport(reportFile = list(nextToProject = FALSE, path = reportPath)) file.show(reportPath) # Working example to generate a report with a custom template### # Note that only tables get replaced. It is not possible to add plots to a report via connectors, but it can be done in the GUI. initializeLixoftConnectors("pkanalix") loadProject(file.path(getDemoPath(),"2.case_studies","project_aPCSK9_SAD.pkx")) runScenario() reportPath = tempfile("report", fileext = ".docx") generateReport(templateFile = file.path(getDemoPath(),"2.case_studies","report_templates","PK_report_template_aPCSK9.docx"), reportFile = list(nextToProject = FALSE, path = reportPath)) file.show(reportPath)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get Bioequivalence results
Description
Get results for different steps in bioequivalence analysis.
Usage
getBioequivalenceResults(...)
Arguments
... |
(character) Name of the step whose values must be displayed : "anova", "coefficientsOfVariation", "confidenceIntervals" |
Click here to see examples
# bioeqResults = getBioequivalenceResults() # retrieve all the results values. bioeqResults = getBioequivalenceResults("anova", "confidenceIntervals") # retrieve anova and confidence intervals results. ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Pkanalix] Get the value of minimized cost in CA
Description
Get the value of the cost function minimized in CA, and additional criteria to compare models.
Usage
getCACost()
Details
The detailed formulas for cost, -2LL, AIC and BIC are given in https://pkanalix.lixoft.com/ca-settings/.
- Cost: weighted sum of squared residuals. Weights are specified in setCASettings. Additional weights are applied to balance the number of observations in each profile.
- -2LL: Twice the negative log-likelihood based on the obtained cost.
- AIC: Akaike Information Criteria calculated based on a penalization of -2LL by the number of optimized parameters.
- BIC: Bayesian Information Criteria calculated based on a penalization of -2LL by the number of optimized parameters and the total number of data points.
Value
A data frame with the values of total cost, -2LL, AIC and BIC computed during the last run.
See Also
Click here to see examples
# getCACost() -> data.frame( Cost = -2.2, -2LL = 15.12, AIC = 17.54, BIC = 18.45 ) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get CA individual parameters
Description
Get the estimated values for each subject of some of the individual CA parameters of the current project.
Usage
getCAIndividualParameters(...)
Arguments
... |
(character) Name of the individual parameters whose values must be displayed. |
Value
A data frame giving the estimated values of the individual parameters of interest for each subject
and a list of information relative to these parameters (units)
Click here to see examples
# indivParams = getCAIndividualParameters() # retrieve all the available individual parameters values. indivParams = getCAIndividualParameters("ka", "V") # retrieve ka and V values for all individuals. $parameters id ka V 1 0.8 1.2 . ... ... N 0.4 2.2 ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get CA parameter statistics
Description
Get statistics over the estimated values of some of the CA parameters of the current project.
Statistics are computed on the different sets of individuals resulting from the stratification settings passed in argument or, if not given, the ones previously set.
Usage
getCAParameterStatistics(parameters = c(), stratification = NULL)
Arguments
parameters |
[optional](vector<character>) Name of the parameters whose values must be displayed. |
stratification |
[optional] Stratification to apply on results. By default, project one is applied. Stratification is a list containing:
See setCAResultsStratification for more details about this argument structure. |
Value
A data frame giving the statistics over the parameters of interest, and a list of information relative to these parameters (units)
See Also
setCAResultsStratification getCAResultsStratification setResultsStratificationGroups
Click here to see examples
# indivParams = getCAParameterStatistics() # retrieve all the available parameter values. indivParams = getCAParameterStatistics(parameters = c("ka", "V")) # retrieve ka and V values for all individuals. $parameters parameter min Q1 median Q3 max mean SD SE CV geoMean geoSD ka 0.05742669 0.08886395 0.1186787 0.1495961 0.1983748 0.1221367 0.03898449 0.007957675 31.91873 0.1159751 1.398436 V 7.859237 13.51599 23.00674 30.73677 43.39608 22.95211 10.99187 2.243707 47.89047 20.23981 1.704716 #' statistics = getCAParameterStatistics(stratification = list(groups = list(name = "WEIGHT", definition = c(65, 70, 72)), state = list(split = "WEIGHT"))) # retrieve the values of all the available parameters split by WEIGHT. ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get CA results stratification
Description
Get the stratification used to compute NCA parameters statistics table.
Stratification is defined by:
- stratification covariate groups which are shared by both NCA and CA results
- a stratification state which is specific to each task results
Usage
getCAResultsStratification()
Details
For each covariate, stratification groups can be defined as a list with:
name | character | covariate name |
definition | vector<double>(continuous) || list<vector<character>>(categorical) | group separations (continuous) || modality sets (categorical) |
A stratification state is represented as a list with:
split | vector<character> | ordered list of splitted covariates |
filter | list< pair<character, vector<integer>> > | list of paired containing a covariate name and the indexes of associated kept groups |
Value
A list with stratification groups (‘groups’) and stratification state (‘state’).
See Also
Click here to see examples
# getCAResultsStratification() $groups list( list( name = "WEIGHT", definition = c(70), type = "continuous", range = c(65,85) ), list( name = "TRT", definition = list(c("a","b"), "c") type = "categorical", categories = c("a","b","c") ) ) $state $split "WEIGHT" $filter list(list("WEIGHT", c(1,3), list("TRT", c(1))) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get NCA individual parameters
Description
Get the estimated values for each subject of some of the individual NCA parameters of the current project.
Usage
getNCAIndividualParameters(...)
Arguments
... |
(character) Name of the individual parameters whose values must be displayed. Possible parameters:
|
Value
A data frame giving the estimated values of the individual parameters of interest for each subject,
and a list of information relative to these parameters (units & CDISC names)
Click here to see examples
# indivParams = getNCAIndividualParameters() # retrieve the values of all the available parameters. indivParams = getNCAIndividualParameters("Tmax","Clast") # retrieve only the values of Tmax and Clast for all individuals. $parameters id Tmax Clast 1 0.8 1.2 . ... ... N 0.4 2.2 $information CDISC Tmax TMAX Clast CLST ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get estimated values of NCA ratios
Description
Get for each subject the estimated values of NCA ratios, defined as ratios of NCA parameters across occasions.
Usage
getNCAIndividualRatios(...)
Arguments
... |
(character) Names of the ratios whose values must be displayed. Empty: all available ratios are displayed. |
See Also
getNCARatioStatistics, createNCARatio, deleteNCARatio, getNCARatios
Click here to see examples
# loadProject(paste0(getDemoPath(),"/1.basic_examples/project_accumulationRatio.pkx")) runNCAEstimation() getNCAIndividualRatios()
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get NCA parameter statistics
Description
Get statistics over the estimated values of some of the NCA parameters of the current project.
Statistics are computed on the different sets of individuals resulting from the stratification settings passed in argument or, if not given, the ones previously set.
Usage
getNCAParameterStatistics(parameters = c(), stratification = NULL)
Arguments
parameters |
[optional](vector<character>) Name of the parameters whose values must be displayed and a list of information relative to these parameters (units & CDISC names). Possible parameters:
|
stratification |
[optional] Stratification to apply on results. By default, project one is applied. Stratification is a list containing:
See setNCAResultsStratification for more details about this argument structure. |
See Also
setNCAResultsStratification getNCAResultsStratification setResultsStratificationGroups
Click here to see examples
# statistics = getNCAParameterStatistics() # retrieve the values of all the available parameters. statistics = getNCAParameterStatistics(parameters = c("Tmax","Clast")) # retrieve only the values of Tmax and Clast for all individuals. $statistics parameter min Q1 median Q3 max mean SD SE CV Ntot Nobs Nmiss geoMean geoSD Tmax 2.5 2.5 2.75 3 3 2.75 0.3535534 0.25 12.85649 2 2 0 2.738613 1.1376 Clast 0.76903 0.76903 0.85836 0.94769 0.94769 0.85836 0.1263317 0.08933 14.7178 2 2 0 0.853699 1.15918 $information units CDISC Tmax h Tmax Clast mg.mL^-1 Clast statistics = getNCAParameterStatistics(stratification = list(groups = list(name = "WEIGHT", definition = c(65.5, 72)), state = list(split = "WEIGHT"))) # retrieve the values of all the available parameters splitted by WEIGHT. ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get summary statistics for NCA ratios
Description
Get statistics over the estimated values of NCA ratios defined in the current project as ratios of NCA parameters across occasions.
Usage
getNCARatioStatistics(...)
Arguments
... |
(character) Names of the ratios whose values must be displayed. Empty: all available ratios are displayed. |
See Also
getNCAIndividualRatios, createNCARatio, deleteNCARatio, getNCARatios
Click here to see examples
# loadProject(paste0(getDemoPath(),"/1.basic_examples/project_accumulationRatio.pkx")) runNCAEstimation() getNCARatioStatistics()
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get NCA results stratification
Description
Get the stratification used to compute NCA parameters stratistics table.
Stratification is defined by:
- stratification covariate groups which are shared by both NCA and CA results
- a stratification state which is specific to each task results
Usage
getNCAResultsStratification()
Details
For each covariate, stratification groups can be defined as a list with:
name | character | covariate name |
definition | vector<double>(continuous) or list<vector<character>>(categorical) | group separations (continuous) or modality sets (categorical) |
A stratification state is represented as a list with:
split | vector<character> | ordered list of splitted covariates |
filter | list< pair<character, vector<integer>> > | list of paired containing a covariate name and the indexes of associated kept groups |
Value
A list with stratification groups (‘groups’) and stratification state (‘state’).
See Also
Click here to see examples
# getNCAResultsStratification() $groups list( list( name = "WEIGHT", definition = c(70), type = "continuous", range = c(65,85) ), list( name = "TRT", definition = list(c("a","b"), "c") type = "categorical", categories = c("a","b","c") ) ) $state $split "WEIGHT" $filter list("Span", list("TRT", c(1))) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get points included in lambda_Z computation
Description
Get points used to compute lambda_Z in NCA estimation.
Usage
getPointsIncludedForLambdaZ()
Click here to see examples
# pointsIncluded = getPointsIncludedForLambdaZ() ID time concentration BLQ includedForLambdaZ 1 0 0.0 0.00 0 0 2 0 0.5 3.05 0 1 3 0 2.0 5.92 1 1 ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Set CA results stratification
Description
Set the stratification used to compute CA parameters statistics table.
Stratification is defined by:
- stratification covariate groups which are shared by both NCA and CA results
- a stratification state which is specific to each task results
Usage
setCAResultsStratification(
split = NULL,
filter = NULL,
groups = NULL,
state = NULL
)
Arguments
split |
(vector<character>) Ordered list of splitted covariates |
filter |
(list< pair<character, vector<integer>> >) List of paired containing a covariate name and the indexes of associated kept groups |
groups |
Stratification groups list |
state |
Stratification state |
Details
For each covariate, stratification groups can be defined as a list with:
name | character | covariate name |
definition | vector<double>(continuous) || list<vector<character>>(categorical) | group separations (continuous) || modality sets (categorical) |
A stratification state is represented as a list with:
split | vector<character> | ordered list of splitted covariates |
filter | list< pair<character, vector<integer>> > | list of paired containing a covariate name and the indexes of associated kept groups |
See Also
Click here to see examples
# setCAResultsStratification(split = "SEX") setCAResultsStratification(split = c("SEX", "WEIGHT")) setCAResultsStratification(filter = list("SEX", 1)) setCAResultsStratification(filter = list(list("SEX", 1), list("WEIGHT", c(1,3)))) setCAResultsStratification(split = "WEIGHT", filter = list(list("TRT", c(1,2))), groups = list(list(name = "WEIGHT", definition = c(65,5, 72)), list(name = "TRT", definition = list(c("a","b"), "c", c("d","e"))))) s = getCAResultsStratification() setCAResultsStratification(state = s$state, groups = s$groups) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Set NCA results stratification
Description
Set the stratification used to compute NCA parameters statistics table.
Stratification is defined by:
- stratification covariate groups which are shared by both NCA and CA results
- a stratification state which is specific to each task results
Usage
setNCAResultsStratification(
split = NULL,
filter = NULL,
groups = NULL,
state = NULL
)
Arguments
split |
(vector<character>) Ordered list of splitted covariates |
filter |
(list< pair<character, vector<integer>> >) List of pairs containing a covariate name and the indexes of associated kept groups |
groups |
Stratification groups list |
state |
Stratification state |
Details
For each covariate, stratification groups can be defined as a list with:
name | character | covariate name |
definition | vector<double>(continuous) || list<vector<character>>(categorical) | group separations (continuous) || modality sets (categorical) |
A stratification state is represented as a list with:
split | vector<character> | ordered list of splitted covariates |
filter | list< pair<character, vector<integer>> > | list of paired containing a covariate name and the indexes of associated kept groups |
Note: For acceptance criteria filtering, it is possible to give only the criterion name instead of a pair.
See Also
Click here to see examples
# setNCAResultsStratification(split = "SEX") setNCAResultsStratification(split = c("SEX", "WEIGHT")) setNCAResultsStratification(filter = "Span") setNCAResultsStratification(filter = list("Span", list("SEX", 1))) setNCAResultsStratification(split = "WEIGHT", filter = list(list("TRT", c(1,2))), groups = list(list(name = "WEIGHT", definition = c(65,5, 72)), list(name = "TRT", definition = list(c("a","b"), "c", c("d","e"))))) s = getNCAResultsStratification() setNCAResultsStratification(state = s$state, groups = s$groups) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Compute the charts data
Description
Compute (if needed) and export the charts data of a given plot or, if not specified, all the available project plots.
Usage
computeChartsData(plot = NULL, output = NULL, exportVPCSimulations = NULL)
Arguments
plot |
(character) [optional][Monolix] Plot type. If not specified, all the available project plots will be considered. Available plots: bivariatedataviewer, covariateviewer, outputplot, indfits, obspred, residualsscatter, residualsdistribution, vpc, npc, predictiondistribution, parameterdistribution, randomeffects, covariancemodeldiagnosis, covariatemodeldiagnosis, likelihoodcontribution, fisher, saemresults, condmeanresults, likelihoodresults. |
output |
(character) [optional][Monolix] Plotted output (depending on the software, it can represent an observation, a simulation output, …). By default, all available outputs are considered. |
exportVPCSimulations |
(logical) [optional][Monolix] Should VPC simulations be exported if available. Equals FALSE by default. NOTE: If ‘plot" argument is not provided, ‘output’ and "task’ arguments are ignored. |
Details
computeChartsData can be used to compute and export the charts data for plots available in the graphical user interface as in Monolix, PKanalix or Simulx, when you export > export charts data.
The exported charts data is saved as txt files in the result folder, in the ChartsData subfolder.
Notice that it does not impact the current scenario.
To get a ggplot equivalent to the plot in the GUI, but customizable in R with the ggplot2 library, better use one of the plot… functions available in the connectors for Monolix and PKanalix (not available for Simulx). To get the charts data for one of these plot functions as a dataframe, you can use getChartsData.
See Also
Click here to see examples
# computeChartsData() # Monolix - PKanalix - Simulx computeChartsData(plot = "vpc", output = "y1") # Monolix ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix] Get last run status
Description
Return an execution report about the last run with a summary of the error which could have occurred.
Usage
getLastRunStatus()
Value
A structure containing
- a logical which equals TRUE if the last run has successfully completed,
- a summary of the errors which could have occurred.
Click here to see examples
# lastRunInfo = getLastRunStatus() lastRunInfo$status -> TRUE lastRunInfo$report -> "" ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Get current scenario
Description
Get the list of tasks that will be run at the next call to runScenario. For Monolix, get in addition the associated method (linearization true or false), and the associated list of plots.
Usage
getScenario()
Details
For Monolix, getScenario returns a given list of tasks, the linearization option and the list of plots.
Every task in the list is associated to a logical
NOTE: Within a MONOLIX scenario, the order according to which the different algorithms are run is fixed:
Algorithm | Algorithm Keyword |
Population Parameter Estimation | “populationParameterEstimation” |
Conditional Mode Estimation (EBEs) | “conditionalModeEstimation” |
Sampling from the Conditional Distribution | “conditionalDistributionSampling” |
Standard Error and Fisher Information Matrix Estimation | “standardErrorEstimation” |
LogLikelihood Estimation | “logLikelihoodEstimation” |
Plots | “plots” |
For PKanalix, getScenario returns a given list of tasks.
Every task in the list is associated to a logical
NOTE: Within a PKanalix scenario, the order according to which the different algorithms are run is fixed:
Algorithm | Algorithm keyword |
Non Compartmental Analysis | “nca” |
Bioequivalence estimation | “be” |
For Simulx, setScenario returns a given list of tasks.
Every task in the list is associated to a logical
NOTE: Within a Simulx scenario, the order according to which the different algorithms are run is fixed:
Algorithm | Algorithm keyword |
Simulation | “simulation” |
Outcomes and endpoints | “endpoints” |
Note: every task can also be run separately with a specific function, such as runSimulation in Simulx, runEstimation in Monolix. The CA task in PKanalix cannot be part of a scenario, it must be run with runCAEstimation
.
Value
The list of tasks that corresponds to the current scenario, indexed by task names.
See Also
Click here to see examples
# [MONOLIX] scenario = getScenario() scenario -> $tasks populationParameterEstimation conditionalDistributionSampling conditionalModeEstimation standardErrorEstimation logLikelihoodEstimation plots TRUE TRUE TRUE FALSE FALSE FALSE $linearization = T $plotList = "outputplot", "vpc" [PKANALIX] scenario = getScenario() scenario nca be TRUE FALSE [SIMULX] scenario = getScenario() scenario simulation endpoints TRUE FALSE ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Run scenario
Description
Run the scenario that has been set with setScenario.
Usage
runScenario()
Details
A scenario is a list of tasks to be run. Setting the scenario is equivalent to selecting tasks in Monolix, PKanalix or Simulx GUI that will be performed when clicking on RUN.
If exportchartsdata preference is set to TRUE with setPreferences, runscenario generates the charts data in the result folder.
Every task can also be run separately with a specific function, such as runSimulation in Simulx, runEstimation in Monolix. The CA task in PKanalix cannot be part of a scenario, it must be run with runCAEstimation
.
See Also
Click here to see examples
# runScenario() ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[Monolix – PKanalix – Simulx] Set scenario
Description
Clear the current scenario and build a new one from a given list of tasks.
Usage
setScenario(...)
Arguments
... |
A list of tasks as previously defined |
Details
A scenario is a list of tasks to be run by runScenario. Setting the scenario is equivalent to selecting tasks in Monolix, PKanalix or Simulx
GUI that will be performed when clicking on RUN.
For Monolix, setScenario requires a given list of tasks, the linearization option and the list of plots.
Every task in the list should be associated to a logical
NOTE: by default the logical is FALSE, thus, the user can only state what will run during the scenario.
NOTE: Within a MONOLIX scenario, the order according to which the different algorithms are run is fixed:
Algorithm | Algorithm Keyword |
Population Parameter Estimation | “populationParameterEstimation” |
Conditional Mode Estimation (EBEs) | “conditionalModeEstimation” |
Sampling from the Conditional Distribution | “conditionalDistributionSampling” |
Standard Error and Fisher Information Matrix Estimation | “standardErrorEstimation” |
LogLikelihood Estimation | “logLikelihoodEstimation” |
Plots | “plots” |
For PKanalix, setScenario requires a given list of tasks.
Every task in the list should be associated to a logical
NOTE: By default the logical is FALSE, thus, the user can only state what will run during the scenario.
NOTE: Within a PKanalix scenario, the order according to which the different algorithms are run is fixed:
Algorithm | Algorithm keyword |
Non Compartmental Analysis | “nca” |
Bioequivalence estimation | “be” |
For Simulx, setScenario requires a given list of tasks.
Every task in the list should be associated to a logical
NOTE: By default the logical is FALSE, thus, the user can only state what will run during the scenario.
NOTE: Within a Simulx scenario, the order according to which the different algorithms are run is fixed:
Algorithm | Algorithm keyword |
Simulation | “simulation” |
Outcomes and endpoints | “endpoints” |
Note: every task can also be run separately with a specific function, such as runSimulation in Simulx, runEstimation in Monolix. The CA task in PKanalix cannot be part of a scenario, it must be run with runCAEstimation
.
See Also
Click here to see examples
# [MONOLIX] scenario = getScenario() scenario$tasks = c(populationParameterEstimation = T, conditionalModeEstimation = T, conditionalDistributionSampling = T) setScenario(scenario) [PKANALIX] scenario = getScenario() scenario = c(nca = T, be = F) setScenario(scenario) [SIMULX] scenario = getScenario() scenario = c(simulation = T, endpoints = F) setScenario(scenario) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Automatically estimate initial parameters values
Description
Automatically estimate initial parameters values for CA.
Usage
getCAParametersByAutoInit()
Details
Run automatic calculation of optimized parameters for CA initial parameters set in the project.
Click here to see examples
# autoinitvalues <- getCAParametersByAutoInit() setCAInitialValues(initialValues = autoinitvalues) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Estimate the bioequivalence.
Description
Estimate the bioequivalence for the selected parameters.
Usage
runBioequivalenceEstimation()
Click here to see examples
# runNCAEstimation() ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Estimate the individual parameters using compartmental analysis.
Description
Estimate the CA parameters for each individual of the project.
Usage
runCAEstimation()
Click here to see examples
# runCAEstimation() ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Run both non compartmental and compartmental analysis.
Description
Run the NCA analysis and the CA analysis if the structural model for the CA calculation is defined.
Usage
runEstimation()
Click here to see examples
# runEstimation() ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Estimate the individual parameters using non compartmental analysis.
Description
Estimate the NCA parameters for each individual of the project.
Usage
runNCAEstimation()
Click here to see examples
# runNCAEstimation() ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Add custom parameters from the preferences to the project
Description
Add custom parameters from the preferences to the project.
If a custom NCA parameter exists in preferences, this function can be used to add it to the current
project. Available arguments:
“names” | (character, required) | Name of the parameter. |
Usage
addCustomNCAParametersFromPreferences(names = NULL)
See Also
createCustomNCAParameter, deleteCustomNCAParameter, getCustomNCAParameters
[PKanalix] Create a new NCA parameter as a formula of existing parameters
Description
Create a new NCA parameter as a formula of existing parameters and covariates. Available arguments:
“name” | (character, required) | Name of the parameter. |
“formula” | (character, required) | Formula used to calculate the parameter. This mathematical expression can contain PKanalix names of parameters (including partial AUCs, but excluding other custom parameters), names of covariates, operators +, -, /, * and ^, parentheses and functions abs, sqrt, exp, log, log10, logit, invlogit, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, floor, ceil, factorial, min, max, atan2, rem. Partial AUC parameters with non-integer times need to be specifically formatted (e.g., AUC_0_24.5 becomes AUC_0_24d5 and AUC_0_1e-07 becomes AUC_0_1em07). |
“alias” | (character, optional) | Stylized name of the parameter that will be displayed in results. Can contain tags <sub></sub> and <sup></sup> for subscript and superscript. |
“unit” | (character, optional) | Units of the parameter. It can contain substrings TIME, AMOUNT, VOLUME, CONC, GRADING to use data set units of time, dose amount, volume, concentration and normalization units. Different units should be combined with the character “.”, and “^-1” can be used. |
“previousName” | (character, optional) | Should be used only when editing an existing custom parameter. In that case the previous parameter is replaced with the new parameter. |
“addToPreferences” | (logical, optional) | Whether to add the custom NCA parameter to PKanalix preferences (default=FALSE). |
Usage
createCustomNCAParameter(
name,
formula,
alias = "",
unit = "",
addToPreferences = FALSE,
previousName = ""
)
See Also
deleteCustomNCAParameter, getCustomNCAParameters, addCustomNCAParametersFromPreferences
Click here to see examples
# loadProject(paste0(getDemoPath(),"/1.basic_examples/project_covariates.pkx")) createCustomNCAParameter(name="CLperkg", formula = "Cl_F_obs/WEIGHT", alias = "CL/kg", unit = "VOLUME.TIME^-1.KG^1", addToPreferences = FALSE)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Create a ratio of NCA parameters across occasions.
Description
To use this, the dataset must have occasions. The ratios of parameters are calculated for each individual, across occasions.
The ratio corresponds to the parameter value for the test modality divided by the parameter value for the reference modality. If certain subjects have multiple values of the test or reference value (for example, one occasion of R drug and two occasions of T drug), then the arithmetic mean of values of the subject-occasion results is taken.
Usage
createNCARatio(name, variable, reference, test, parameter)
Arguments
name |
(character) Name of the new parameter defined as ratio of existing parameters. |
variable |
(character) Occasion or categorical covariate column. |
reference |
(character) Reference modality. |
test |
(character) Test modality. |
parameter |
(character) Name of the NCA parameter used in the ratio. |
See Also
deleteNCARatio, getNCARatios, getNCAIndividualRatios, getNCARatioStatistics
Click here to see examples
# loadProject(paste0(getDemoPath(),"/2.case_studies/project_Theo_extravasc_SD.pkx")) createNCARatio(name="AUCratio", variable="FORM", reference = "ref", test = "test", parameter = "AUCINF_obs")
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Delete a custom NCA parameter
Description
Remove a previously created custom parameter from the current project. Available arguments:
“name” | (character, required) | Name of the parameter. |
Usage
deleteCustomNCAParameter(name)
See Also
createCustomNCAParameter, getCustomNCAParameters, addCustomNCAParametersFromPreferences
[PKanalix] Delete an NCA ratio.
Description
[PKanalix] Delete an NCA ratio.
Usage
deleteNCARatio(name)
Arguments
name |
(character) Name of the parameter defined as ratio of existing NCA parameters. |
See Also
createNCARatio, getNCARatios
Click here to see examples
# loadProject(file.path(getDemoPath(), "1.basic_examples", "project_accumulationRatio.pkx")) deleteNCARatio(name = "accumulationRatio") getNCARatios()
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get the settings associated to the bioequivalence estimation.
Description
Get the settings associated to the bioequivalence estimation. Associated settings are:
“level” | (integer) | Level of the confidence interval |
“bioequivalenceLimits” | (vector) | Limit in which the confidence interval must be to conclude the bioequivalence is true |
“computedBioequivalenceParameters” | (data.frame) | Parameters to consider for the bioequivalence analysis and if they should be log-transformed (true/false). This list must be a subset of the NCA setting “computedncaparamteters”. |
“linearModelFactors” | (list) | The values are headers of the data set, except for reference where it must be one of the categories of the “formulation” categorical covariate. For “additional”, a vector of headers can be given. |
“degreesFreedom” | (character) | t-test using the residuals degrees of freedom assuming equal variances (“residuals”) or using the Welch-Satterthwaite degrees of freedom assuming unequal variances (“WelchSatterthwaite”, default) |
“bedesign” | (character) | automatically recognize BE design “crossover” or “parallel” (cannot be changed) |
Usage
getBioequivalenceSettings(...)
Arguments
... |
[optional] (character) Name of the settings whose value should be displayed. If no argument is provided, all the settings are returned. |
Value
A list with each setting name mapped to its current value.
See Also
Click here to see examples
# getBioequivalenceSettings() # retrieve a list of all the bioequivalence methodology settings getBioequivalenceSettings("level","bioequivalenceLimits") # retrieve a list containing only the value of the settings whose name has been passed in argument ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get the initial values of individual parameters for the compartmental analysis
Description
Get the list of initial values for all parameters of the model used for compartmental analysis.
Each element of the parameter list is a list of
“value” | (double) | Initial value to use. Must be in the limits in case of bounded constraint. |
“constraint” | (character) | Constraint on the parameter. Possible values are “none”, “positive” or “bounded”. |
“limits” | (vector of doubles) | [optional] Limits in case of bounded constraint. |
Usage
getCAInitialValues()
[PKanalix] Get the settings associated to the compartmental analysis
Description
Get the settings associated to the compartmental analysis. Associated settings are:
“weightingCA” | (character) | Type of weighting objective function. One of “uniform”, “Yobs”, “Ypred”, “Ypred2”, “Yobs2” or “combined”. |
“pool” | (logical) | Fit with individual parameters or with the same parameters for all individuals. |
“blqMethod” | (character) | Method by which the BLQ data should be replaced. One of “zero”, “LOQ”, “LOQ2” or “missing”. |
Usage
getCASettings(...)
Arguments
... |
[optional] (character) Name of the settings whose value should be displayed. If no argument is provided, all the settings are returned. |
Value
A list with each setting name mapped to its current value.
See Also
Click here to see examples
# getCASettings() # retrieve a list of all the CA methodology settings getCASettings("weightingca","blqmethod") # retrieve a list containing only the value of the settings whose name has been passed in argument ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Retrieve the list of the custom NCA parameters in the project and/or the preferences
Description
Retrieve the list of the custom NCA parameters defined in the current project and/or the preferences. Available arguments:
“fromPreferences” | (logical, optional) | If the list should include parameters available in preferences. |
“fromProject” | (logical, optional) | If the list should include parameters added to the current project. |
“onlyCompatible” | (logical, optional) | If the list should include only parameters compatible with the current project. |
Usage
getCustomNCAParameters(
fromPreferences = TRUE,
fromProject = TRUE,
onlyCompatible = FALSE
)
See Also
createCustomNCAParameter, deleteCustomNCAParameter
[PKanalix] Get the data settings associated to the non compartmental analysis
Description
Get the data settings associated to the non compartmental analysis. Associated settings are:
“urinevolume” | (character) | regressor name used as urine volume. |
“datatype” | (list) | list(“obsId” = character(“plasma” or “urine”)). The type of data associated with each obsId: observation ID from data set. |
“units” | (list) | list with the units associated to “dose”, “time”, “volume” and “grading”. |
“scalings” | (list) | list with the scaling factor associated to “concentration”, “dose”, “time” and “urinevolume”. |
“enableunits” | (logical) | are units enabled or not. |
Usage
getDataSettings(...)
Arguments
... |
[optional] (character) Name of the settings whose value should be displayed. If no argument is provided, all the settings are returned. |
Value
A list with each setting name mapped to its current value.
See Also
Click here to see examples
# getDataSettings() # retrieve a list of all the NCA methodology settings getDataSettings("urinevolume") # retrieve a list containing only the value of the settings whose name has been passed in argument ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get defined NCA ratios.
Description
This returns the settings used to define ratios of NCA parameters across occasions, with the same values as the ones given with createNCARatio.
Usage
getNCARatios()
See Also
createNCARatio, deleteNCARatio
Click here to see examples
# loadProject(paste0(getDemoPath(),"/1.basic_examples/project_accumulationRatio.pkx")) getNCARatios()
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Get the settings associated to the non compartmental analysis
Description
Get the settings associated to the non compartmental analysis. Associated settings are:
“obsidtouse” | (character) | The observation id from data section to use for computations |
“administrationType” | (list) | list(key = “admId”, value = character(“intravenous” or “extravascular”)). admId Admninistration ID from data set or 1 if no admId column in the dataset. |
“integralMethod” | (character) | Method for AUC and AUMC calculation and interpolation. Possible outputs are Possible methods are “linTrapLinInterp” (linear trapezoidal linear), “linLogTrapLinLogInterp” (linear log trapezoidal), “upDownTrapUpDownInterp” (linear up log down ) and “linTrapLinLogInterp” (linear trapezoidal linear/log). |
“partialAucTime” | (list) | The first element of the list is a bolean describing if this setting is used. The second element of the list is a list of the values of the bounds of the partial AUC calculation intervals. |
“interdoseIntervalForSingleDose” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is a number defining the interdose interval. |
“blqMethodBeforeTmax” | (character) | Method by which the BLQ data before Tmax should be replaced. |
“blqMethodAfterTmax” | (character) | Method by which the BLQ data after Tmax should be replaced. |
“ajdr2AcceptanceCriteria” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is the value of the adjusted R2 acceptance criteria for the estimation of lambda_Z. |
“extrapAucAcceptanceCriteria” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is the value of the AUC extrapolation acceptance criteria for the estimation of lambda_Z. |
“spanAcceptanceCriteria” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is the value of the span acceptance criteria for the estimation of lambda_Z. |
“lambdaRule” | (character) | Main rule for the lambda_Z estimation. |
“timeInterval” | (vector) | Time interval for the lambda_Z estimation when “lambdaRule” = “interval”. |
“timeValuesPerId” | (list) | list(“idName” = idTimes,…): idTimes Observation times to use for the calculation of lambda_Z for the id idName. |
“nbPoints” | (integer) | Number of points for the lambda_Z estimation when “lambdaRule” = “points”. |
“maxNbOfPoints” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is the value maximum number of points to use for the lambda_Z estimation when “lambdaRule” = “R2” or “adjustedR2”. |
“startTimeNotBefore” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is the value minimum time value to use for the lambda_Z estimation when “lambdaRule” = “R2” or “adjustedR2”. |
“weightingNCA” | (character) | Weighting method used for the regression that estimates lambda_Z. |
“computedNCAParameters” | (vector) | All the parameters to compute during the analysis. |
“sparse” | (logical) | If the data should be considered sparse, and hence NCA should run on the mean profiles. |
“spareStratification” | (vector) | The covariates that should be used to stratify the mean profiles for sparse NCA. |
“sparseCensoring” | (list) | The censoring settings to apply to calculate the mean profiles for sparse NCA in case of censored data (see setNCASettings for more details). |
Usage
getNCASettings(...)
Arguments
... |
[optional] (character) Name of the settings whose value should be displayed. If no argument is provided, all the settings are returned. |
Value
A list with each setting name mapped to its current value.
See Also
Click here to see examples
# getNCASettings() # retrieve a list of all the NCA methodology settings getNCASettings("lambdaRule","integralMethod") # retrieve a list containing only the value of the settings whose name has been passed in argument ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Set the value of one or several of the settings associated to the bioequivalence estimation
Description
Set the value of one or several of the settings associated to the bioequivalence estimation. Associated settings are:
“level” | (integer) | Level of the confidence interval |
“bioequivalenceLimits” | (vector) | Limit in which the confidence interval must be to conclude the bioequivalence is true |
“computedBioequivalenceParameters” | (data.frame) Parameters to consider for the bioequivalence analysis and if they should be log-transformed (true/false). This list must be a subset of the NCA setting “computedncaparamteters”. | |
“linearModelFactors” | (list) | The list can specify “id”, “period”, “formulation”, “sequence” and “additional”. The values are headers of the data set, except for reference where it must be one of the categories of the “formulation” categorical covariate. For “additional”, a vector of headers can be given. |
“degreesFreedom” | (character) | t-test using the residuals degrees of freedom assuming equal variances (“residuals”) or using the Welch-Satterthwaite degrees of freedom assuming unequal variances (“WelchSatterthwaite”, default) |
Usage
setBioequivalenceSettings(...)
Arguments
... |
A collection of comma-separated pairs {settingName = settingValue}. |
See Also
Click here to see examples
# setBioequivalenceSettings(level = 90, bioequivalencelimits = c(85, 115)) # set the settings whose name has been passed in argument setBioequivalenceSettings(computedbioequivalenceparameters = data.frame(parameters = c("Cmax", "Tmax"), logtransform = c(TRUE, FALSE))) setBioequivalenceSettings(linearmodelfactors = list(id="SUBJ", period="OCC", formulation="FORM", reference="ref", sequence="SEQ", additional=c("Group","Phase"))) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Set the initial values of parameters for the compartmental analysis
Description
Set the initial values of parameters for the compartmental analysis.
Usage
setCAInitialValues(initialValues)
Arguments
initialValues |
a list of lists. For each parameter, a list specifies:
|
See Also
Click here to see examples
# setCAInitialValues(list(Cl=list(value=0.4, constraint = "none"), V=list(value=0.5, constraint="positive"), ka=list(value=0.04, constraint="bounded", limits=c(0, 1)))) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Set the settings associated to the compartmental analysis
Description
Set the settings associated to the compartmental analysis. Associated settings names are:
“weightingCA” | (character) | Type of weighting objective function. Possible methods are “uniform”, “Yobs”, “Ypred”, “Ypred2”, “Yobs2” or “combined” (default). |
“pool” | (logical) | If FALSE, fit with individual parameters or with the same parameters for all individuals if TRUE. FALSE (default). |
“blqMethod” | (character) | Method by which the BLQ data should be replaced. Possible methods are “zero”, “LOQ”, “LOQ2” or “missing” (default). |
Usage
setCASettings(...)
Arguments
... |
A collection of comma-separated pairs {settingName = settingValue}. |
See Also
Click here to see examples
# setCASettings(weightingCA = "uniform", blqMethod = "zero") # set the settings whose name has been passed in argument ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Set the value of one or several of the data settings associated to the non compartmental analysis
Description
Set the value of one or several of the data settings associated to the non compartmental analysis. Associated settings names are:
“urinevolume” | (character) | regressor name used as urine volume. |
“datatype” | (list) | list(“obsId” = character(“plasma” or “urine”). The type of data associated with each obsId. Default "plasma". |
“units” | (list) | list with the units associated to “dose” (“fg”, “pg”,”ng”,”ug”,”mg”,”g”,”pmol”,”nmol”,”umol”,”mmol”, “mol”, “IU”, “mIU”, “uIU”, “Bq”, “kBq”, “MBq”, “GBq”, “mgEq”, “ugEq”, “ngEq” or “pgEq”), “time” (“s”,”min”,”h”,”d” or “w”), “volume” (“L”, “dL” or “mL”) and “grading” (“”, “kg”, “g”, “mg”, “m2”, “mm2” or “cm2”). |
“scalings” | (list) | list with the scaling factor associated to “concentration”, “dose”, “time” and “urinevolume”. |
“enableunits” | (logical) | are units enabled or not. |
Usage
setDataSettings(...)
Arguments
... |
A collection of comma-separated pairs {settingName = settingValue}. |
See Also
Click here to see examples
# setDataSettings("datatype" = list("Y" ="plasma")) # set the settings whose name has been passed in argument setDataSettings("units"=list(dose="ng",time="h",volume="mL", grading="")) setDataSettings("scalings"=list(dose=0.001, time=24)) ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.
[PKanalix] Set the value of one or several of the settings associated to the non compartmental analysis
Description
Set the value of one or several of the settings associated to the non compartmental analysis. Associated settings are:
“obsidtouse” | (character) | The observation id from data section to use for computations. |
“administrationType” | (list) | list(key = “admId”, value = character(“intravenous” or “extravascular”)). admId Admninistration ID from data set or 1 if no admId column in the dataset. |
“integralMethod” | (character) | Method for AUC and AUMC calculation and interpolation. Possible methods are “linTrapLinInterp” (default, linear trapezoidal linear), “linLogTrapLinLogInterp” (linear log trapezoidal), “upDownTrapUpDownInterp” (linear up log down ) and “linTrapLinLogInterp” (linear trapezoidal linear/log). |
“partialAucTime” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is a list of the values of the bounds of the partial AUC calculation intervals. By default, the logical equals FALSE, the lower bound equals to the last dose time in the data set and the upper bound equals to the last observation time of the selected observation ID. |
“interdoseIntervalForSingleDose” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is a number defining the interdose interval. By default, the logical equals FALSE. |
“blqMethodBeforeTmax” | (character) | Method by which the BLQ data before Tmax should be replaced. Possible methods are “missing”, “LOQ”, “LOQ2” or “zero” (default). |
“blqMethodAfterTmax” | (character) | Method by which the BLQ data after Tmax should be replaced. Possible methods are “zero”, “missing”, “LOQ” or “LOQ2” (default). |
“ajdr2AcceptanceCriteria” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is the value of the adjusted R2 acceptance criteria for the estimation of lambda_Z. By default, the logical equals FALSE and the value is 0.98. |
“extrapAucAcceptanceCriteria” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is the value of the AUC extrapolation acceptance criteria for the estimation of lambda_Z. By default, the logical equals FALSE and the value is 20. |
“spanAcceptanceCriteria” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is the value of the span acceptance criteria for the estimation of lambda_Z. By default, the logical equals FALSE and the value is 3. |
“lambdaRule” | (character) | Main rule for the lambda_Z estimation. Possible rules are “R2”, “interval”, “points” or “adjustedR2” (default). |
“timeInterval” | (vector) | Time interval for the lambda_Z estimation when “lambdaRule” = “interval”. This is a vector of size two, default = c(-Inf, Inf) |
“timeValuesPerId” | (list) | list(“idName” = idTimes,…): idTimes Observation times to use for the calculation of lambda_Z for the id idName. Default = NULL, all the times values are used. |
“nbPoints” | (integer) | Number of points for the lambda_Z estimation when “lambdaRule” = “points”. Default = 3. |
“maxNbOfPoints” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is the value maximum number of points to use for the lambda_Z estimation when “lambdaRule” = “R2” or “adjustedR2”. By default, the logical equals FALSE and the value is 500. |
“startTimeNotBefore” | (list) | The first element of the list is a logical describing if this setting is used. The second element of the list is the value minimum time value to use for the lambda_Z estimation when “lambdaRule” = “R2” or “adjustedR2”. By default, the logical equals FALSE and the value is 0. |
“weightingNca” | (character) | Weighting method used for the regression that estimates lambda_Z. Possible methods are “Y”, “Y2” or “uniform” (default). |
“computedNCAParameters” | (vector) | All the parameters to compute during the analysis. Possible parameters: |
|
||
“sparse” | (logical) | If the data should be considered sparse, and hence NCA should run on the mean profiles. By default, the logical equals FALSE. |
“sparseStratification” | (vector) | The covariates that should be used to stratify the mean profiles for sparse NCA. By default, the list is empty. |
“sparseCensoring” | (list) | The censoring settings to calculate the mean profiles for sparse NCA in case of censored data. It is a list with: |
|
||
Usage
setNCASettings(...)
Arguments
... |
A collection of comma-separated pairs {settingName = settingValue}. |
See Also
Click here to see examples
# setNCASettings(integralMethod = "LinLogTrapLinLogInterp", weightingnca = "uniform") # set the settings whose name has been passed in argument setNCASettings(administrationType = list("1"="extravascular")) # set the administration id "1" to extravascular setNCASettings(startTimeNotBefore = list(TRUE, 15)) # set the estimation of the lambda_z with points with time over 15 setNCASettings(timeValuesPerId = list('1'=c(4, 6, 8, 30), '4'=c(8, 12, 18, 24, 30))) # set the points to use for the lambda_z to time={4, 6, 8, 30} for id '1' and ime={8, 12, 18, 24, 30} for id '4' setNCASettings(timeValuesPerId = NULL) # set the points to use for the lambda_z to the default rule setNCASettings(sparse=TRUE, sparseStratification=list("DGROUP", "STUDY"), sparseCensoring=list(rule = list(criterion = "N_BLQ >= 4", target = "individualValues", rules = c("missing", "loq")))) # set sparse NCA with stratication by STUDY and DGROUP. At each time point and in each group, if there are less than 4 censored samples they are considered as missing (ignored), otherwise the mean value is replaced by the largest LOQ. setNCASettings(sparse=T, sparseCensoring=list(rule = "zero", checkMeanSamples = list(loq = 3500, blqBeforeTmax = "zero", blqAfterTmax = "missing"))) # set sparse NCA. At each time point, censored samples are replaced by zero to calculate mean samples. If calculated mean samples are smaller than 3500 they are replaced by zero before Tmax and ignored after Tmax. ## End(Not run)
Back to the list, PKanalix API, Monolix API, Simulx API.